
Kofax RPA
Developer's Guide - Legacy APIs

Version: 11.5.0
Date: 2023-10-02

© 2015–2023 Kofax. All rights reserved.

Kofax is a trademark of Kofax, Inc., registered in the U.S. and/or other countries. All other
trademarks are the property of their respective owners. No part of this publication may be
reproduced, stored, or transmitted in any form without the prior written permission of Kofax.

Table of Contents
Preface... 5

Related Documentation..5
Training... 6
Getting help with Kofax products...7

Chapter 1: Java Programmer's Guide..8
Java Basics.. 8

First Example.. 9
Robot Input...10
Attribute Types... 11
Execution Parameters... 13
Robot Libraries... 15

Java Advanced..17
Load Distribution and Failover.. 17
Executor Logger... 18
Data Streaming.. 19
SSL.. 22
Parallel Execution...23
Repository Integration.. 24

Under the Hood.. 25
RequestExecutor Features.. 26
Web Applications..26

API Debugging.. 27
Repository API... 28

Dependencies... 28
Repository Client..28
Deployment with Repository Client.. 31
Repository Rest API... 32

Management Console API... 38
Configure Java API... 38
Queue a robot run.. 39

Chapter 2: .NET Programmer's Guide... 41
.NET Basics... 41

First Example.. 41
Robot Input...43

3

Kofax RPA Developer's Guide - Legacy APIs

Attribute Types... 44
Execution Parameters... 46
Robot Libraries... 47

.NET Advanced...49
Load Distribution... 49
Data Streaming.. 50
SSL.. 54
Repository Integration.. 55
Executor Logger... 56

Under the Hood.. 56
RequestExecutor Features.. 57

Repository API... 57
Repository Client..58
Deployment with Repository Client.. 60
Repository API as Rest.. 61
Logging..61

Management Console API... 62
Queue a robot run.. 62

Chapter 3: Management Console REST API..64
Tasks..64

4

Preface

Robots are executed on RoboServer through an API (Java or .Net). You may use the API directly in
your own application or indirectly when you execute robots using Management Console.

 This guide contains the deprecated APIs that are now referred to as legacy APIs.

This guide consists of three parts:

• Java Programmer's Guide, which describes the legacy API used in Java programs.
• .NET Programmer's Guide, which describes the legacy API used in .NET applications, including C#

programs.

Java and .NET API reference documentation is available in your offline documentation folder. The
Java API documentation is also available on the online documentation site. For more information,
see the Kofax RPA Installation Guide.

Related Documentation
The documentation set for Kofax RPA is available here:1

https://docshield.kofax.com/Portal/Products/RPA/11.5.0-nlfihq5gwr/RPA.htm

In addition to this guide, the documentation set includes the following items:

Kofax RPA Release Notes
Contains late-breaking details and other information that is not available in your other Kofax RPA
documentation.

Kofax RPA Technical Specifications
Contains information on supported operating systems and other system requirements.

Kofax RPA Installation Guide
Contains instructions on installing Kofax RPA and its components in a development environment.

Kofax RPA Upgrade Guide
Contains instructions on upgrading Kofax RPA and its components to a newer version.

1 You must be connected to the Internet to access the full documentation set online. For access
without an Internet connection, see the Installation Guide.

5

https://docshield.kofax.com/Portal/Products/RPA/11.5.0-nlfihq5gwr/RPA.htm

Kofax RPA Developer's Guide - Legacy APIs

Kofax RPA Administrator's Guide
Describes administrative and management tasks in Kofax RPA.

Kofax RPA Help
Describes how to use Kofax RPA. The Help is also available in PDF format and known as Kofax RPA
User's Guide.

Kofax RPA Best Practices Guide for Robot Lifecycle Management
Offers recommended methods and techniques to help you optimize performance and ensure
success while using Robot Lifecycle Management in your Kofax RPA environment.

Kofax RPA Getting Started with Robot Building Guide
Provides a tutorial that walks you through the process of using Kofax RPA to build a robot.

Kofax RPA Getting Started with Document Transformation Guide
Provides a tutorial that explains how to use Document Transformation functionality in a Kofax RPA
environment, including OCR, extraction, field formatting, and validation.

Kofax RPA Desktop Automation Service Configuration Guide
Describes how to configure the Desktop Automation Service required to use Desktop Automation
on a remote computer.

Kofax RPA Integration API documentation
Contains information about the Kofax RPA Java API and the Kofax RPA .NET API, which provide
programmatic access to the Kofax RPA product. The Java API documentation is available from both
the online and offline Kofax RPA documentation, while the .NET API documentation is available only
offline.

 The Kofax RPA APIs include extensive references to RoboSuite, the original product name. The
RoboSuite name is preserved in the APIs to ensure backward compatibility. In the context of the
API documentation, the term RoboSuite has the same meaning as Kofax RPA.

Training
Kofax offers both classroom and computer-based training to help you make the most of your Kofax
RPA solution. Visit the Kofax Education Portal at https://learn.kofax.com/ for details about the
available training options and schedules.

Also, you can visit the Kofax Intelligent Automation SmartHub at https://smarthub.kofax.com/ to
explore additional solutions, robots, connectors, and more.

6

https://learn.kofax.com/
https://smarthub.kofax.com/

Kofax RPA Developer's Guide - Legacy APIs

Getting help with Kofax products
The Kofax Knowledge Portal repository contains articles that are updated on a regular basis to
keep you informed about Kofax products. We encourage you to use the Knowledge Portal to obtain
answers to your product questions.

To access the Kofax Knowledge Portal, go to https://knowledge.kofax.com.

 The Kofax Knowledge Portal is optimized for use with Google Chrome, Mozilla Firefox, or
Microsoft Edge.

The Kofax Knowledge Portal provides:
• Powerful search capabilities to help you quickly locate the information you need.

Type your search terms or phrase into the Search box, and then click the search icon.
• Product information, configuration details and documentation, including release news.

To locate articles, go to the Knowledge Portal home page and select the applicable Solution
Family for your product, or click the View All Products button.

From the Knowledge Portal home page, you can:
• Access the Kofax Community (for all customers).

On the Resources menu, click the Community link.
• Access the Kofax Customer Portal (for eligible customers).

Go to the Support Portal Information page and click Log in to the Customer Portal.
• Access the Kofax Partner Portal (for eligible partners).

Go to the Support Portal Information page and click Log in to the Partner Portal.
• Access Kofax support commitments, lifecycle policies, electronic fulfillment details, and self-

service tools.
Go to the Support Details page and select the appropriate article.

7

https://knowledge.kofax.com/
https://knowledge.kofax.com/bundle/z-kb-articles-salesforce1/page/19280.html
https://knowledge.kofax.com/bundle/z-kb-articles-salesforce1/page/19280.html
https://knowledge.kofax.com/category/support_details

Chapter 1

Java Programmer's Guide

This chapter describes how to execute Robots using the Kofax RPA legacy Java API. The guide
assumes that you know how to write simple robots, and that you are familiar with the Java
programming language.

 The printStackTrace method is deprecated in Kofax Kapow version 9.6 and later.

You can find information about specific Java classes in the Application Programming Interface
section on the Kofax RPA Product Documentation site: https://docshield.kofax.com/Portal/Products/
RPA/11.5.0-nlfihq5gwr/RPA.htm. This information is also available in your offline documentation
folder. For more details, see the Kofax RPA Installation Guide.

Java Basics
Robots run by the Management Console are executed using the Java API, which allows you to send
requests to a RoboServer that instructs it to execute a particular robot. This is a classic client/server
setup in which Management Console acts as the client and RoboServer as the server.

By using the API, any Java based application can become a client to RoboServer. In addition to
running robots that store data in a database, you can also have the robots return data directly back
to the client application. Here are some examples:

• Use multiple robots to do a federated search, which aggregates results from multiple sources in
real time.

• Run a robot in response to an event on your application back end. For instance, run a robot when
a new user signs up, to create accounts on web-based systems not integrated directly into your
back end.

This guide introduces the core classes, and how to use them for executing robots. We will also
describe how to provide input to robots, and control their execution on RoboServer.

The Java API is a JAR file located in /API/legacy/robosuite-java-api/lib/robosuite-
api.jar inside the Kofax RPA installation folder. See "Important Folders" in the Installation Guide
for details. All examples in this guide are also found in /API/robosuite-java-api/examples.
Located next to the Java API are five additional JAR files which comprise the external dependencies
of the API. Most basic API tasks such as executing robots can be done without using any of these
third-party libraries, while some advanced features do require the usage of one or more of these
libraries. The examples in this guide specify when such libraries are required.

8

https://docshield.kofax.com/Portal/Products/RPA/11.5.0-nlfihq5gwr/RPA.htm
https://docshield.kofax.com/Portal/Products/RPA/11.5.0-nlfihq5gwr/RPA.htm

Kofax RPA Developer's Guide - Legacy APIs

 The Java API JAR file requires JAXP version 1.5, so legacy implementations, such as Xalan-Java
2.7.2, will not work with the Java JAR file.

First Example
The following is the code required to execute the robot named NewsMagazine.robot, which is
located in the Tutorials folder in the default project. The robot writes its results using the Return
Value step action, which makes it easy to handle the output programmatically using the API. Other
robots (typically those run in a schedule by Management Console) store their data directly in a
database using the Store in Database step action, in which case data collected by the robot is not
returned to the API client.

In the following example, the NewsMagazine robot is executed and the output is processed
programmatically.

Execute a Robot without input:
import com.kapowtech.robosuite.api.java.repository.construct.*;
 import com.kapowtech.robosuite.api.java.rql.*;
 import com.kapowtech.robosuite.api.java.rql.construct.*;

 /**
 * Example that shows you how to execute NewsMagazine.robot from tutorial1
 */
 public class Tutorial1 {

 public static void main(String[] args) throws ClusterAlreadyDefinedException {

 RoboServer server = new RoboServer("localhost", 50000);
 boolean ssl = false;
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, ssl);

 Request.registerCluster(cluster); // you can only register a cluster once per
 application

 try {
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 RQLResult result = request.execute("MyCluster");

 for (Object o : result.getOutputObjectsByName("Post")) {
 RQLObject value = (RQLObject) o;
 String title = (String) value.get("title");
 String preview = (String) value.get("preview");
 System.out.println(title + ", " + preview);
 }
 }
 }
 }

The following table lists the classes involved and their responsibilities.

RoboServer This is a simple value object that identifies a RoboServer that can execute
robots. Each RoboServer must be activated by a Management Console and
assigned KCU before use.

Cluster A cluster is a group of RoboServers functioning as a single logical unit.

9

Kofax RPA Developer's Guide - Legacy APIs

Request This class is used to construct the robot request. Before you can execute any
requests, you must register a cluster with the Request class.

DefaultRobotLibrary A robot library instructs RoboServer on where to find the robot identified in
the request. Later examples explore the various robot library types and when/
how to use them.

RQLResult This class contains the result of a robot execution. The result contains value
responses, with log and server messages.

RQLObject Each value that is returned from a robot using the Return Value action can be
accessed as an RQLObject.

The following line tells the API that our RoboServer is running on localhost port 50000.
RoboServer server = new RoboServer("localhost", 50000);

The following code defines a cluster with a single RoboServer. The cluster is registered with the
Request class, giving you the ability to execute requests on this cluster. Each cluster can only be
registered once.

Registering a cluster:
boolean ssl = false;
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, ssl);
 Request.registerCluster(cluster);

The following code creates a request that executes the robot named NewsMagazine.robot located
at Library:/Tutorials.Library:/ referring to the robot Library configured for the request.
Here the DefaultRobotLibrary is used, which instructs RoboServer to look for the robot in
the local file system for the server. See Robot Libraries for more information on how to use robot
libraries.
Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());

The next line executes the robot on the cluster named MyCluster (the cluster previously registered)
and returns the result once the robot is done. By default, execute throws an exception if the robot
generates an API exception.
RQLResult result = request.execute("MyCluster")

Here we process the extracted values. First, we get all extracted values of the type named Post and
iterate through them. For each RQLObject, we access the attributes of the Post type and print the
result. Attributes and mappings are discussed in a later section.
for (Object o : result.getOutputObjectsByName("Post")) {
 RQLObject value = (RQLObject) o;
 String title = (String) value.get("title");
 String preview = (String) value.get("preview");
 System.out.println(title + ": " + preview);
 }

Robot Input
Most robots executed through the API are parameterized through input, such as a search keyword
or login credentials. Input to a robot is part of the request to RoboServer and is provided using the
createInputVariable method on the request.

10

Kofax RPA Developer's Guide - Legacy APIs

Input using implicit RQLObjectBuilder:
Request request = new Request("Library:/Input.robot");
 request.createInputVariable("userLogin").setAttribute("username", "scott")
 .setAttribute("password", "tiger");

In this example, a Request is created and createInputVariable is used to create an input
variable named userLogin. Then, setAttribute is used to configure the user name and
password attributes of the input variable.

The preceding example is a common shorthand notation, but can also be expressed in more detail
by using the RQLObjectBuilder:

Input using explicit RQLObjectBuilder:
Request request = new Request("Library:/Input.robot");
 RQLObjectBuilder userLogin = request.createInputVariable("userLogin");
 userLogin.setAttribute("username", "scott");
 userLogin.setAttribute("password", "tiger");

The two examples are identical. The first utilizes the cascading method invocation on the
anonymous RQLObjectBuilder and therefore shorter.

When RoboServer receives this request, the following occurs:

• RoboServer loads Input.robot (from whatever RobotLibrary is configured for the request).
• RoboServer verifies that the robot has a variable named userLogin and that this variable is

marked as input.
• RoboServer now verifies that the attributes configured using setAttribute are compatible

with the type of variable userLogin. As a result, the type must have attributes named username
and password and must both be text-based attributes (the next section describes the mapping
between the API and Design Studio attributes).

• If all input variables are compatible, RoboServer starts executing the robot.

If a robot requires multiple input variables, you must create all of them to execute the robot. You
only have to configure required attributes; any no-required attributes that you do not configure
through the API will have a null value. If you have a robot that requires a login to both Facebook
and Twitter, you could define the input like this.
Request request = new Request("Library:/Input.robot");
 request.createInputVariable("facebook").setAttribute("username", "scott")
 .setAttribute("password", "facebook123");
 request.createInputVariable("twitter").setAttribute("username", "scott")
 .setAttribute("password", "twitter123");

Attribute Types
When you define a new type in Design Studio, select a type for each attribute. Some attributes can
contain text, like Short text, Long Text, Password, HTML, XML, and when used inside a robot, there
may be requirements to store text in these attributes. If you store text in an XML attribute, the text
must be a valid XML document. This validation occurs when the type is used inside a robot, but as
the API does not know anything about the type, it does not validate attribute values in the same
manner. As a result, the API only has eight attribute types and Design Studio has 19 available types.
This table shows the mapping between the API and Design Studio attribute types.

11

Kofax RPA Developer's Guide - Legacy APIs

API to Design Studio mapping

API Attribute Type Design Studio Attribute Type

Text Short Text, Long Text, Password, HTML, XML, Properties, Language, Country,
Currency, Refind Key

Integer Integer

Boolean Boolean

Number Number

Character Character

Date Date

Session Session

Binary Binary, Image, PDF

The API attribute types are then mapped to Java in the following way.

Java Types for Attributes

API Attribute Type Java Class

Text java.lang.String

Integer java.lang.Long

Boolean java.lang.Boolean

Number java.lang.Double

Character java.lang.Character

Date java.util.Date

Session com.kapowtech.robosuite.api.construct.Session

Binary com.kapowtech.robosuite.api.construct.Binary

The setAttribute method of RQlObjectBuilder is overloaded so you do not need to specify
the attribute type explicitly when configuring an attribute through the API, as long as the right Java
class is used as an argument. Here is an example that shows how to set the attributes for an object
with all possible Design Studio attribute types.

Recommended usage of setAttribute:
Request request = new Request("Library:/AllTypes.robot");
 RQLObjectBuilder inputBuilder = request.createInputVariable("AllTypes");
 inputBuilder.setAttribute("anInt", new Long(42L));
 inputBuilder.setAttribute("aNumber", new Double(12.34));
 inputBuilder.setAttribute("aBoolean", Boolean.TRUE);
 inputBuilder.setAttribute("aCharacter", 'c');
 inputBuilder.setAttribute("aShortText", "some text");
 inputBuilder.setAttribute("aLongText", "a longer test");
 inputBuilder.setAttribute("aPassword", "secret");
 inputBuilder.setAttribute("aHTML", "<html>text</html>");
 inputBuilder.setAttribute("anXML", "<tag>text</tag>");
 inputBuilder.setAttribute("aDate", new Date());
 inputBuilder.setAttribute("aBinary", new Binary("some bytes".getBytes()));

12

Kofax RPA Developer's Guide - Legacy APIs

 inputBuilder.setAttribute("aPDF", (Binary) null);
 inputBuilder.setAttribute("anImage", (Binary) null);
 inputBuilder.setAttribute("aProperties", "name=value\nname2=value2");
 inputBuilder.setAttribute("aSession", (Session) null);
 inputBuilder.setAttribute("aCurrency", "USD");
 inputBuilder.setAttribute("aCountry", "US");
 inputBuilder.setAttribute("aLanguage", "en");
 inputBuilder.setAttribute("aRefindKey", "Never use this a input");

The preceding example explicitly uses new Long(42L) and new Double(12.34), although 42L and
12.34 would be sufficient due to auto-boxing. Also notice that we have to cast null values, because
the Java compiler cannot otherwise determine which of the overloaded setAttribute methods
to call. However, as unconfigured attributes will automatically be null, you never need to set null
explicitly.

It is possible to specify the Attribute and AttributeType explicitly when creating input using the
API. This approach is not recommended, but may be needed in rare cases and would look similar to
the following.

Incorrect usage of setAttribute:
Request request = new Request("Library:/AllTypes.robot");
 RQLObjectBuilder inputBuilder = request.createInputVariable("AllTypes");
 inputBuilder.setAttribute(new Attribute("anInt", "42", AttributeType.INTEGER));
 inputBuilder.setAttribute(new Attribute("aNumber", "12.34", AttributeType.NUMBER));
 inputBuilder.setAttribute(new Attribute("aBoolean", "true", AttributeType.BOOLEAN));
 inputBuilder.setAttribute(new Attribute("aCharacter", "c", AttributeType.CHARACTER));
 inputBuilder.setAttribute(new Attribute("aShortText", "some text",
 AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aLongText", "a longer test",
 AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aPassword", "secret", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aHTML", "<html>bla</html>",
 AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("anXML", "<tag>text</tag>",
 AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aDate", "2012-01-15 23:59:59.123",
 AttributeType.DATE));
 inputBuilder.setAttribute(new Attribute("aBinary",
 Base64Encoder.encode("some bytes".getBytes()), AttributeType.BINARY));
 inputBuilder.setAttribute(new Attribute("aPDF", null, AttributeType.BINARY));
 inputBuilder.setAttribute(new Attribute("anImage", null, AttributeType.BINARY));
 inputBuilder.setAttribute(new Attribute("aProperties", "name=value\nname2=value2",
 AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aSession", null, AttributeType.SESSION));
 inputBuilder.setAttribute(new Attribute("aCurrency", "USD", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aCountry", "US", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aLanguage", "en", AttributeType.TEXT));
 inputBuilder.setAttribute(new Attribute("aRefindKey", "Never use this a input",
 AttributeType.TEXT));

All attribute values must be provided in the form of strings. The string values are then converted
to the appropriate Java objects based on the attribute type provided. This is only useful if you build
other generic APIs on top of the Kofax RPA Java API.

Execution Parameters
In addition to the createInputVariable method, the Request contains a number of methods that
control how the robot executes on RoboServer.

13

Kofax RPA Developer's Guide - Legacy APIs

Execution Control Methods on Request

setMaxExecutionTime(int seconds) Controls the execution time of the robot. When this
time has elapsed, the robot is stopped by RoboServer.
The timer does not start until the robot begins to
execute, so if the robot is queued on RoboServer, this
is not taken into account.

setStopOnConnectionLost(boolean) When true (default), the robot stops if RoboServer
discovers that the connection to the client application
has been lost. You should have a very good reason for
setting this value to false; if your code is not written
to handle this value, your application will not perform
as expected.

setStopRobotOnApiException(boolean) When true (default), the robot is stopped by
RoboServer after the first API exception is raised. By
default, most steps in a robot raise an API exception
if the step fails to execute. Configure this value on the
Error Handling tab for the step.
When set to false, the robot continues to execute
regardless of API exceptions. However, unless your
application is using the RequestExecutor streaming
execution mode, an exception is still thrown by
execute(). Be cautious when setting it to false.

setUsername(String), setPassword(String) Sets the RoboServer credentials. RoboServer can
be configured to require authentication. When this
option is enabled, the client must provide credentials
or RoboServer rejects the request.

setRobotLibrary(RobotLibrary) A robot library instructs RoboServer on where to
find the robot identified in the request. For more
examples related to the various library types and
their usage, see Robot Libraries.

setExecutionId(String) Allows you to set the executionId for this request.
If you do not provide one, RoboServer generates
one automatically. The execution ID is used for
logging and is also needed to stop the robot
programmatically. The ID must be globally unique
(over time). If two robots use the same execution ID,
the logs will be inconsistent.

setProject(String) This method is used solely for logging purposes.
Management Console uses this field to link log
messages to project, so the log views can filter by
project.
If your application is not using the
RepositoryRobotLibrary, you should probably set
this value to inform the RoboServer logging system
which project (if any) this robot belongs to.

14

Kofax RPA Developer's Guide - Legacy APIs

Robot Libraries
In Design Studio, robots are grouped into projects. If you look in the file system, you can see that
these projects are identified by a folder named Library (see the "Libraries and Robot Projects" topic
in Help for Kofax RPA for details).

When you build the execute request for RoboServer, you identify the robot by a robot URL:

Request request = new Request("Library:/Input.robot");

Here, Library:/ is a symbolic reference to a robot library, in which RoboServer should look for the
robot. The RobotLibrary is specified on the builder:

request.setRobotLibrary(new DefaultRobotLibrary());

Three different robot library implementations are available, and your selection depends on the
deployment environment.

Robot Libraries

Library Type Description

DefaultRobotLibrary This library configures RoboServer to look for the robot in
the current project folder, which is defined in the Settings
application.
If you have multiple RoboServers, you must deploy your
robots on all RoboServers.
This robot library is not cached, so the robot is reloaded
from disk with every execution. This approach makes
the library usable in a development environment where
robots change often, but it is not suitable for a production
environment.

15

Kofax RPA Developer's Guide - Legacy APIs

Library Type Description

EmbeddedFileBasedRobotLibrary This library is embedded in the execute request sent to
RoboServer. To create this library you must create a zip
file containing the robots and all dependencies (types,
snippets, and resources). Use the Tools > Create Robot
Library File menu in Design Studio.
The library is sent with every request, which adds some
overhead for large libraries, but the libraries are cached on
RoboServer, which offers best possible performance.
One strength is that robots and code can be deployed
as a single unit, which offers clean migration from a QA
environment to production environment. However, if the
robots change often, you have to redeploy them often.
You can use the following code to configure the embedded
robot library for your request.
Request request = new
Request("Library:/Tutorials/
 NewsMagazine.robot");
RobotLibrary library =
 new EmbeddedFileBasedRobotLibrary
 (new FileInputStream
 ("c:\\embeddedLibrary.robotlib"));
request.setRobotLibrary(library);

16

Kofax RPA Developer's Guide - Legacy APIs

Library Type Description

RepositoryRobotLibrary This is the most flexible robot library.
This library uses the Management Consoles built-in
repository as a robot library. When you use this library,
RoboServer contacts the Management Console, which
sends a robot library containing the robot and its
dependencies.
Caching occurs on a per robot basis, inside both
Management Console and RoboServer. Inside
Management Console, the generated library is cached
based on the robot and its dependencies. On RoboServer,
the cache is based on a timeout, so it does not have to ask
the Management Console for each request. In addition,
the library loading between RoboServer and Management
Console uses HTTP public/private caching, to further
reduce bandwidth.
If NewsMagazine.robot is uploaded to the Management
Console, you can use the repository robot library when
executing the robot:
Request request = new
Request("Library:/Tutorials/
NewsMagazine.robot");
RobotLibrary library = new
RepositoryRobotLibrary("http://
localhost:50080", "Default Project",
60000);
request.setRobotLibrary(library);

This command instructs RoboServer to load the robot from
a local Management Console and caches it for one minute
before checking with the Management Console to see if a
new version of the robot (its type and snippets) is changed.
In addition, any resource loaded through the Library:/
protocol causes the RoboServer to request the resource
directly from the Management Console.

Java Advanced
This section describes advanced API features, including output streaming, logging and SSL
configuration, as well as parallel execution.

Load Distribution and Failover
Inside the RequestExecutor, the executor is given an array of RoboServers. As the executor is
constructed, it tries to connect to each RoboServer. Once connected, it sends a ping request to each
RoboServer to discover how the server is configured.

Load balanced executor:
RoboServer prod = new RoboServer("prod.kapow.local", 50000);
 RoboServer prod2 = new RoboServer("prod2.kapow.local", 50000);
 Cluster cluster = new Cluster("Prod", new RoboServer[]{ prod, prod2}, false);

17

Kofax RPA Developer's Guide - Legacy APIs

 Request.registerCluster(cluster);

The load is distributed to each online RoboServer in the cluster, based on the number of unused
execution slots on the RoboServer. The next request is always distributed to the RoboServer with
the most available slots. The number of available execution slots is obtained through the initial ping
response, and the executor keeps track of each robot it starts and when it completes. The number
of execution slots on a RoboServer is determined by the Max concurrent robots setting in the
Management Console > Admin > RoboServers section.

If a RoboServer goes offline, it does not receive any robot execution requests before it has
successfully responded to the ping request.

One Client Rule
By default, API connections are limited to 20 connections. However, to ensure the best
performance, we recommend that you have only one API client using a given cluster of
RoboServers. If you have too many JVMs running robots against the same RoboServers, it will result
in reduced performance.

Although the following is not recommended, if your environment requires the
handling of a higher volume, you can configure the connection limit by adjusting the
kapow.max.multiplexing.clients system property in the common.conf file.

Executor Logger
When you execute a request, the execute method throws an exception if a robot generates an
error. Other types of errors and warnings are reported through the ExecutorLogger interface. In
the previous examples, ExecutionLogger was not provided when executing robots, which is the
default implementation that writes to System.out.

The following is an example of how the ExecutorLogger reports if one of the RoboServers goes
offline. In this example, a cluster is configured with a RoboServer that is not online.

ExecutorLogger, offline server example:
RoboServer rs = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("name", new RoboServer[]{rs}, false);
 Request.registerCluster(cluster);

If you run this example, it writes the following to the console.

ExecutorLogger, offline RoboServer console output:
RoboServer{host='localhost', port=50000} went offline.
 Connection refused

If you do not need your application to write directly to System.out, you can provide a different
ExecutorLogger implementation, when registering the cluster.

Use DebugExecutorLogger:
Request.registerCluster(cluster, new DebugExecutorLogger());

This example uses the DebugExecutorLogger(), which also writes to System.out, but only if
the API debugging is enabled. You can provide your own implementation of the ExecutorLogger,

18

Kofax RPA Developer's Guide - Legacy APIs

to control how error messages are handled. Check the ExecutorLogger JavaDoc for additional
details.

Data Streaming
If you need to present the results from a robot execution in real-time, you can use the API to return
the extracted values immediately instead of waiting for the robot to finish its execution and access
the RQLResult.

The API offers the possibility to receive a callback every time the API receives a value that was
returned by the robot. Do this through the RobotResponseHandler interface.

Response streaming using AbstractFailFastRobotResponseHandler:
public class DataStreaming {

 public static void main(String[] args) throws ClusterAlreadyDefinedException {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server}, false);
 Request.registerCluster(cluster);

 try {
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 RobotResponseHandler handler = new AbstractFailFastRobotResponseHandler()
 {
 public void handleReturnedValue(RobotOutputObjectResponse response,
 Stoppable stoppable) throws RQLException {
 RQLObject value = response.getOutputObject();
 Long personId = (Long) value.get("personId");
 String name = (String) value.get("name");
 Long age = (Long) value.get("age");
 System.out.println(personId + ", " + name + ", " + age);
 }
 };
 request.execute("MyCluster", handler);
 }
 }
 }

The preceding example uses the second execute method of the request, which
expects a RobotResponseHandler in addition to the name of the cluster to execute
the robot on. In this example, create a RobotResponseHandler by extending
AbstractFailFastRobotResponseHandler, which provides default error handling, to handle
only the values returned by the robot.

The handleReturnedValue method is called whenever the API receives a returned value from
RoboServer. The AbstractFailFastRobotResponseHandler used in this example throws
exceptions in the same way as the non-streaming execute method. This means that an exception is
thrown in response to any API exceptions generated by the robot.

The RobotResponseHandler has several methods that can be grouped into three categories.

Robot life cycle events
Methods called when the robot execution state changes on RoboServer, such as when it starts and
finishes execution.

19

Kofax RPA Developer's Guide - Legacy APIs

Robot data events
Methods called when the robot returns data or errors to the API.

Additional error handling
Methods called due to an error inside RoboServer or in the API.

RobotResponseHandler - robot life cycle events

Method name Description

void requestSent(RoboServer roboServer,
ExecuteRequest request)

Called when the RequestExecutor finds the server
that executes the request.

void requestAccepted(String executionId) Called when the found RoboServer accepts the
request and puts it into its queue.

void robotStarted(Stoppable stoppable) Called when the RoboServer begins to execute the
robot. This usually occurs immediately after the robot
is queued, unless the RoboServer is under a heavy
load, or used by multiple API clients.

void robotDone(RobotDoneEvent reason) Called when the robot is done executing on
RoboServer. The RobotDoneEvent is used to specify
if the execution terminated normally, due to an error,
or if it was stopped.

RobotResponseHandler - robot data events

Method name Description

void

handleReturnedValue(RobotOutputObjectResponse
response, Stoppable stoppable)

Called when the robot is executed a Return Value
action and the value is returned via the socket to the
API.

void handleRobotError(RobotErrorResponse
response, Stoppable stoppable)

Called when the robot raises an API exception.
Under normal circumstances the robot
stops executing after the first API exception.
This behavior can be overridden by using
Request.setStopRobotOnApiException(false),
in which case this method is called multiple times.
This approach is useful if you want a data streaming
robot to continue to execute regardless of any
generated errors.

void handleWriteLog(RobotMessageResponse
response, Stoppable stoppable)

Called when the robot executes the Write Log step.
This is useful to provide additional logging info from a
robot.

20

Kofax RPA Developer's Guide - Legacy APIs

RobotResponseHandler - additional error handling

Method name Description

void handleServerError(ServerErrorResponse
response, Stoppable stoppable)

Called if RoboServer generates an error. For example,
it can happen if the server is too busy to process any
requests, or if an error occurs inside RoboServer,
which prevents it from starting the robot.

handleError(RQLException e, Stoppable
stoppable)

Called if an error occurs inside the API, or most
commonly, if the client loses the connection to
RoboServer.

Many of the methods include a Stoppable object, which can be used to stop in response to a
specific error or value returned.

Some methods allow you to throw an RQLException, which may have consequences. The
thread that calls the handler is the thread that calls Request.execute() and exceptions thrown
can overload the call stack. If you throw an exception in response to handleReturnedValue,
handleRobotError or handleWriteLog, it is your responsibility to invoke Stoppable.stop(), or
the robot may continue to execute even though the call to Request.execute() is completed.

Data streaming is most often used in one of the following use cases.
• Ajax based web applications, where results are presented to the user in real-time. If data is not

streamed, results cannot be shown until the robot is done running.
• Robots that return so much data that the client would not be able to hold it all in memory

throughout the robot execution.
• Processes that need to be optimized so the extracted values are processed in parallel with the

robot execution.
• Processes that store data in databases in a custom format.
• Robots that should ignore or require custom handling of API exceptions (see the following

example).

Response and error collecting using AbstractFailFastRobotResponseHandler:
public class DataStreamingCollectErrorsAndValues {

 public static void main(String[] args) throws ClusterAlreadyDefinedException {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server}, false);
 Request.registerCluster(cluster);

 try {
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setStopRobotOnApiException(false); // IMPORTANT!!
 request.setRobotLibrary(new DefaultRobotLibrary());
 ErrorCollectingRobotResponseHandler handler =
 new ErrorCollectingRobotResponseHandler();
 request.execute("MyCluster", handler);

 System.out.println("Extracted values:");
 for (RobotOutputObjectResponse response : handler.getOutput()) {
 RQLObject value = response.getOutputObject();
 Long personId = (Long) value.get("personId");
 String name = (String) value.get("name");
 Long age = (Long) value.get("age");

21

Kofax RPA Developer's Guide - Legacy APIs

 System.out.println(personId + ", " + name + ", " + age);
 }

 System.out.println("Errors:");
 for (RobotErrorResponse error : handler.getErrors()) {
 System.out.println(error.getErrorLocationCode() + ", " +
 error.getErrorMessage());
 }
 }
}

private static class ErrorCollectingRobotResponseHandler extends
 AbstractFailFastRobotResponseHandler {

 private List<RobotErrorResponse> _errors =
 new LinkedList<RobotErrorResponse>();
 private List<RobotOutputObjectResponse> _output =
 new LinkedList<RobotOutputObjectResponse>();
 public void handleReturnedValue
 (RobotOutputObjectResponse response, Stoppable stoppable)
 throws RQLException {
 _output.add(response);
}

@Override
public void handleRobotError(RobotErrorResponse response,
 Stoppable stoppable) throws RQLException {
 // do not call super as this will stop the robot
 _errors.add(response);
}

public List<RobotErrorResponse> getErrors() {
 return _errors;
}

public List<RobotOutputObjectResponse> getOutput() {
 return _output;
 }
 }
}

The preceding example shows how to use a RobotResponseHandler that collects returned
values and errors. This type of handler is useful if the robot should continue to execute even when
errors are encountered, which can be useful if the website is unstable and occasionally times out.
Notice that only robot errors (API exceptions) are collected by the handler. If the connection to
RoboServer is lost, Request.execute() still throws an RQLException, and the robot is stopped
by RoboServer.

For more details, check the RobotResponseHandler JavaDoc.

SSL
The API communicates with RoboServer through an RQLService, which is a RoboServer
component that listens for API requests on a specific network port. When you start a RoboServer,
you specify if it should use the encrypted SSL service, or the plain socket service, or both (using two
different ports). All RoboServers in a cluster must be running the same RQLService (although the
port may be different).

Assuming we have started a RoboServer with the SSL RQLService on port 50043:

22

Kofax RPA Developer's Guide - Legacy APIs

RoboServer -service ssl:50043

The following code can be used.

SSL configuration
RoboServer server = new RoboServer("localhost", 50043);
 boolean ssl = true;
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server}, ssl);
 Request.registerCluster(cluster);

You need to create the cluster as an SSL cluster and specify the SSL port used by each RoboServer.
Now all communication between RoboServer and the API will be encrypted.

For this example to work, you need not-yet-commons-ssl-0.3.17.jar in your application
classpath. You can find it next to the API .jar file inside your Kofax RPA installation.

In addition to data encryption, SSL offers the possibility to verify the identity of the remote
party. This type of verification is very important on the Internet. Most often your API client and
RoboServers are on the same local network, so you rarely need to verify the identity of the other
party, but the API supports this feature should it become necessary.

Because identity verification is almost never used, it is not described in this guide. If you are
interested, see the SSL examples included with the Java API.

Parallel Execution
Both execute methods of the Request are blocking, which means that a thread is required for each
robot execution. The examples from the previous sections illustrated direct execution of the robot
on the main thread, which is typically not preferable as you can only execute a single robot at a time
in a sequential manner.

The following example executes two tutorial robots in parallel. This example uses the
java.util.concurrent library for multithreading.

Multithreading Example
import com.kapowtech.robosuite.api.java.repository.construct.*;
 import com.kapowtech.robosuite.api.java.rql.*;
 import com.kapowtech.robosuite.api.java.rql.construct.*;
 import com.kapowtech.robosuite.api.java.rql.engine.hotstandby.*;

 import java.util.concurrent.*;

 public class ParallelExecution {

 public static void main(String[] args) throws Exception {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server},
 false);
 Request.registerCluster(cluster);

 int numRobots = 4;
 int numThreads = 2;
 ThreadPoolExecutor threadPool = new ThreadPoolExecutor(numThreads,
 numThreads, 10, TimeUnit.SECONDS, new LinkedBlockingQueue());
 for (int i = 0; i < numRobots; i++) {
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");

23

Kofax RPA Developer's Guide - Legacy APIs

 request.setRobotLibrary(new DefaultRobotLibrary());
 threadPool.execute(new RobotRunnable(request));
 }
 threadPool.shutdown();
 threadPool.awaitTermination(60, TimeUnit.SECONDS);
 }

 // ---
 // Inner classes
 // ---
 static class RobotRunnable implements Runnable {

 Request _request;

 RobotRunnable(Request request) {
 _request = request;
 }

 public void run() {

 try {
 RQLResult result = _request.execute("MyCluster");
 System.out.println(result);
 }
 }
 }
 }

The preceding example creates a ThreadPoolExecutor with two threads, and we then create
four RobotRunnables and execute them on the thread pool. As the thread pool has two
threads, two robots start to execute immediately. The remaining two robots are parked in the
LinkedBlockingQueue and executed in order after the two first robot finish their execution and
the thread pool threads become available.

Note that the request is mutable, and to avoid raising conditions, the request is cloned inside the
execute method. Because a request is mutable, you should never modify the same request on
separate threads.

Repository Integration
In the Management Console you also specify clusters of RoboServers, which are used to
execute scheduled robots, as well as robots executed as REST services. The API allows you to
use the RepositoryClient to obtain cluster information from Management Console. See the
RepositoryClient documentation for details.

Repository Integration:
public class RepositoryIntegration {
 public static void main(String[] args) throws Exception {

 RepositoryClient client = RepositoryClientFactory.createRepositoryClient
 ("http://localhost:50080", null, null);
 Request.registerCluster(client, "Cluster 1");

 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 RQLResult result = request.execute("MyCluster");
 System.out.println(result);
 }
 }

24

Kofax RPA Developer's Guide - Legacy APIs

The preceding example shows how to create a RepositoryClient that connects to a
Management Console deployed on localhost. For this example to work, you must have commons-
logging-1.1.1.jar, commons-codec-1.4.jar, and commons-httpclient-4.1.jar included in
your classpath.

Authentication is not enabled so null is passed for both user name and password. When you
register the RepositoryClient, you specify the name of a cluster that exists on the Management
Console. It then queries the Management Console to get a list of RoboServers configured for
this cluster, and check every two minutes to see if the cluster configuration is updated on the
Management Console.

This integration allows you to create a cluster on Management Console that you can change
dynamically using the Management Console user interface. When you use a Management Console
cluster with the API, usage should be exclusive, and you should not use it for scheduling robots,
because this would break the One Client rule.

Under the Hood
This section explains what is happening under the hood when you register a cluster and execute
requests.

When you register a cluster with the request, a RequestExecutor is created behind the scene. This
RequestExecutor is stored in a Map using the cluster name as key. When a request is executed,
the provided cluster name is used to find the associated RequestExecutor and execute the
request.

Normal execution
public static void main(String[] args) throws InterruptedException,
 RQLException {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 Request.registerCluster(cluster);
 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 RQLResult result = request.execute("MyCluster");
 System.out.println(result);
}

Now write the same example using the hiddenRequestExecutor directly.

Under the hood execution:
public static void main(String[] args) throws InterruptedException,
 RQLException {

 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 RequestExecutor executor = new RequestExecutor(cluster);

 Request request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.setRobotLibrary(new DefaultRobotLibrary());
 RQLResult result = executor.execute(request);
 System.out.println(result);

25

Kofax RPA Developer's Guide - Legacy APIs

 }

The RequestExecutor is hidden by default, so you do not have to keep track of it. You may only
create one RequestExecutor per cluster, so if you use it directly you need to store a reference to
it throughout your application. Using Request.registerCluster(cluster) means that you can
ignore the RequestExecutor and lifecycle rules.

The RequestExecutor contains the necessary state and logic, which provides the load balancing
and failover features. Using the RequestExecutor directly also offers a few extra features.

RequestExecutor Features
When the RequestExecutor is not connected to a repository, you can dynamically add or remove
RoboServers by calling addRoboServer(..) and removeRoboServer(..). These methods modify
the distribution list used inside the RequestExecutor.

RequestExecutor.getTotalAvailableSlots() returns the number of unused execution slots
across all RoboServers in the internal distribution list.

By using these methods, you can dynamically add RoboServers to your RequestExecutor once the
number of available execution slots becomes low.

When you create the RequestExecutor, you may optionally provide an RQLEngineFactory. The
RQLEngineFactory allows you to customize which RQLProtocol is used when connecting to a
RoboServer. This is needed only under rare circumstances, such as to use a client certificate to
increase security. See the Certificates chapter in the Kofax RPA Administrator's Guide for details.

Web Applications
The RequestExecutor contains a number of internal threads used for sending and receiving
requests to RoboServers, as well as pinging each known RoboServer at regular intervals. These
threads are all marked as daemon, which means that they do not prevent the JVM from stopping
when the main thread exists. See Thread JavaDoc for details on daemon threads.

If you use the RequestExecutor inside a web application, the JVM has a longer life span than your
web application, and you can deploy and undeploy your web application while the web container
is running. This means that a web application is responsible for stopping any threads that it has
created. If the web application does not stop a thread, a memory leak is created when you undeploy
the web application. The memory leak occurs because any objects referenced by running threads
cannot be garbage collected until the threads stop.

If you use the RequestExecutor inside a web application, your code is responsible for
shutting down these internal threads, this is done by calling Request.shutdown() or
RequestExecutor.shutdown() if your code created the RequestExecutor explicitly.

This example shows how to use a ServletContextListener to shut down the API correctly when
a web application is undeployed. You must define the context listener in your application web.xml.

Proper shutdown in web application:
import com.kapowtech.robosuite.api.java.repository.construct.*;
 import com.kapowtech.robosuite.api.java.rql.*;
 import com.kapowtech.robosuite.api.java.rql.construct.*;

26

Kofax RPA Developer's Guide - Legacy APIs

 import javax.servlet.*;

 public class APIShutdownListener implements ServletContextListener {
 public void contextInitialized(ServletContextEvent servletContextEvent) {
 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server},
 false);
 try {
 Request.registerCluster(cluster);
 }
 catch (ClusterAlreadyDefinedException e) {
 throw new RuntimeException(e);
 }
 }

 public void contextDestroyed(ServletContextEvent servletContextEvent) {
 Request.shutdown();
 }
 }

contextDestroyed is called when the web container undeploys the application.
Request.shutdown() is called to ensure that all internal threads in the hidden RequestExecutor
are stopped correctly.

As contextInitialized cannot throw any unchecked exceptions, you have to wrap the
ClusterAlreadyDefinedException in a RunTimeException. Due to the class loader hierarchy
in Java web containers, it is possible to get this exception if the application is deployed twice. It only
occurs if the API .jar file was loaded by a common class loader and not by the individual application
class loader.

API Debugging
The API can provide additional information for debugging purposes. To enable API debugging, you
need to configure the system property DEBUG_ON. The value of this property must be a package/
class name in the API.

For example, if you are interested in the data transmissions between the
API and RoboServer, you could ask for debugging information for package
com.kapowtech.robosuite.api.java.rql.io. While you are developing, do this by directly
setting the system property in code:

Enabling Debug:
System.setProperty("DEBUG_ON", "com.kapowtech.robosuite.api.java.rql.io");
 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 Request.registerCluster(cluster);

If you are debugging an application in production, you can define the system property through the
command line.

Enabling Debug:
java -DDEBUG_ON=com.kapowtech.robosuite.api.java.rql.io

27

Kofax RPA Developer's Guide - Legacy APIs

If you are interested in debugging from multiple packages, separate the package names by
commas. Instead of a package name, you can provide the argument ALL, to have debugging from
all packages printed.

Repository API
The Repository API allows you to query the repository of Management Console to get a list of
projects, robots, and the input required to call a robot. It also allows you to programmatically
deploy robots, types, and resource files.

Dependencies
To use the Repository API, add all .jar files from the API/robosuite-java-api/lib folder located
in the Kofax RPA installation folder to the classpath of your project.

Use Java 8 or later.

Repository Client
Communication with the repository is achieved through the RepositoryClient in the
com.kapowtech.robosuite.api.java.repository.engine.

Create RepositoryClient:
public static void main(String[] args) {

 String username = "admin";
 String password = "admin";
 try
 {
 RepositoryClient client = RepositoryClientFactory.
 createRepositoryClient("http://localhost:50080/",
 username, password);
 Project[] projects = client.getProjects();
 for (Project project : projects) {
 System.out.println(project.getName());
 }
 }
 catch(
 RepositoryClientException e)

 {
 e.printStackTrace();
 }
}

Here, a RepositoryClient is configured to connect to the repository of Management Console on
http://localhost:50080/, with a user name and password.

Once the RepositoryClient is created, the getProjects() method is used to query the
repository for a list of projects. Notice that when calling any of the RepositoryClient methods, a
RepositoryClientException is thrown if an error occurs.

The RepositoryClient has the following methods.

28

Kofax RPA Developer's Guide - Legacy APIs

Methods of the RepositoryClient:

Method signature Description

void deleteResource(String projectName,
String resourceName, boolean silent)

Deletes a resource from a project. If silent is true, no
error is generated if the resource does not exist. The
resourceName argument uses the full path of the
resource.

void deleteRobot(String projectName,
String robotName, boolean silent)

Deletes a robot from a project. The robotName
argument uses the full path of the robot.

void deleteSnippet(String projectName,
String snippetName, boolean silent)

Deletes a snippet from a project. The snippetName
argument uses the full path of the snippet.

void deleteType(String projectName, String
modelName, boolean silent)

Deletes a type from a project. The modelName
argument uses the full path of the type.

void deployLibrary(String projectName,
EmbeddedFileBasedRobotLibrary library,
boolean failIfExists)

Deploys a library to the server. Robots, types and
resources are overridden unless failIfExists is
true.

void deployResource(String projectName,
String resourceName, byte[] resourceBytes,
boolean failIfExists)

Deploys a resource to a project. If a resource with the
given name already exists, it can be overridden by
setting failIfExists to false. The resourceName
argument uses the full path of the resource.

void deployRobot(String projectName,
String robotName, byte[] robotBytes,
boolean failIfExists)

Deploys a robot to a project. If a robot with the given
name already exists, it can be overridden by setting
failIfExists to false. The robotName argument
uses the full path of the robot.

void deploySnippet(String projectName,
String snippetName, byte[] snippetBytes,
boolean failIfExists)

Deploys a snippet to a project. If a snippet with the
given name already exists, it can be overridden by
setting failIfExists to false. The snippetName
argument uses the full path of the snippet.

void deployType(String projectName, String
typeName, byte[] typeBytes, boolean
failIfExists)

Deploys a type to a project. If a type with the given
name already exists, it can be overridden by setting
failIfExists to false. The typeName argument
uses the full path of the type.

Project[] getProjects() Returns the projects that exist in this repository.

Cluster[] getRoboServerClusters() Returns a list of clusters and online(valid)
RoboServers that are registered with the
Management Console running the repository.

Cluster[] getRoboServerClusters(boolean
onlineRoboServer)

Returns a list of clusters and RoboServers
registered with the Management Console. Use the
onlineRoboServer flag to indicate if the list of
clusters should include only RoboServers that are
online or all of the RoboServers.

Cluster addRoboServer(String clusterName,
int portNumber, String host)

Adds a new RoboServer to a cluster.

Robot[] getRobotsInProject(String
projectName)

Returns the full path of the Basic Engine Robots
available in the project.

29

Kofax RPA Developer's Guide - Legacy APIs

Method signature Description

RobotSignature getRobotSignature(String
projectName, String robotName)

Returns the robot signature with the full path of
the robot, as well as the input variables required to
execute this robot and a list of the types it may return
or store.

RepositoryFolder
getProjectInventory(String projectName)

Returns the entire tree of folders and files from the
repository.

RepositoryFolder getFolderInventory(String
projectName, String folderPath)

Returns the folders and files of the subfolder in the
specified project from the repository.

RepositoryFolder getFileInventory(String
projectName, String folderPath, String
fileName, RepositoryFile.Type fileType)

Gets the file and the referenced files from the
management console. Note that the file inventory is
wrapped in RepositoryFolder to get references.

void deleteFile(RepositoryFile file) Deletes the specified file from the repository.

Date getCurrentDate() Returns current date and time of the Management
Console.

byte[] getBytes(RepositoryFile file) Returns the size in bytes of the specified file in the
repository.

void updateFile(RepositoryFile file,
byte[] bytes)

Updates the specified file in the repository with new
bytes.

void moveFile (RepositoryFile sourceFile,
String destFolderPath)

Moves the specified file from the repository to a
folder specified in destFolderPath.

void renameRobot(RepositoryFile robotFile,
String newName)

Renames the specified robot file.

void deleteFolder(String projectName,
String folderPath)

Deletes the specified folder in the repository.

void deleteRoboServer(String clusterName,
RoboServer roboServer)

Deletes a RoboServer.

Map<String, String> getInfo() Returns information about the Management Console
and the Repository API
The method returns a mapping of the following:
• "application" to the version of the Management

Console containing major, minor and dot version,
for example, 11.5.0

• "repository" to the ID of the latest DTD used
by the Repository API, such as: //Kapow
Technologies//DTD Repository 1.5//EN

• "rql" to the ID of the latest DTD used by the
Robot Query Language API, such as: //Kapow
Technologies//DTD RoboSuite Robot Query
Language 1.13//EN

pingRepository() Pings the repository server and returns null if
succeeded, and an error string otherwise.

30

Kofax RPA Developer's Guide - Legacy APIs

Method signature Description

deployConnector(String projectName, String
connectorName, byte[] connectorBytes,
boolean failIfExists, AdditionalInfo
additionalInfo)

Deploys a connector in the repository.

deleteConnector(String projectName,
String connectorName, boolean silent,
AdditionalInfo additionalInfo)

Deletes a connector from the repository.

getRobotsByTag(String projectName, String
tag)

Retrieves the robots with a specified tag.

 The full path is relative to your project folder.

Proxy servers must be specified explicitly when creating the RepositoryClient. Standard http
proxy servers without authentication are supported. NTLM proxy servers with authentication are
also supported.

Check the RepositoryClient JavaDoc for additional details.

Deployment with Repository Client
The following example shows how to deploy a robot and a type from the local file system using the
RepositoryClient.

Deployment using RepositoryClient:
String user = "test";
 String password = "test1234";
 RepositoryClient client = new RepositoryClient("http://localhost:50080", user,
 password);
 try {
 FileInputStream robotStream = new FileInputStream
 ("c:\\MyRobots\\Library\\Test.robot");
 FileInputStream typeStream = new FileInputStream
 ("c:\\MyRobots\\Library\\Test.type");

 // Use the Kapow Java APIs StreamUtil to convert InputStream to byte[].
 // For production we recommend IOUtils.toByteArray(InputStream i)
 in the commons-io library from apache.
 byte[] robotBytes = StreamUtil.readStream(robotStream).toByteArray();
 byte[] typeBytes = StreamUtil.readStream(typeStream).toByteArray();

 // we assume that no one has deleted the Default project
 client.deployRobot("Default project", "Test.robot", robotBytes, true);
 client.deployType("Default project", "Test.type", typeBytes, true);
 }
 catch (FileNotFoundException e) {
 System.out.println("Could not load file from disk " + e.getMessage());
 }
 catch (IOException e) {
 System.out.println("Could not read bytes from stream " + e.getMessage());
 }
 catch (FileAlreadyExistsException e) {
 // either the type or file already exist in the give project
 System.out.println(e.getMessage());

31

Kofax RPA Developer's Guide - Legacy APIs

 }

Repository Rest API
The repository API is actually a group of restful services and URLs where data can be posted.

All the repository client methods that retrieve information from the repository send XML to the
Repository, and the Repository responds with XML. All deploy methods post bytes to the Repository
(information encoded in URL) and the Repository returns XML to acknowledge. The format of the
XML sent and received is governed by a DTD found at www.kapowtech.com.

The following is an example of all the XML-based requests. All messages must start with the
following declaration:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE repository-request PUBLIC "-//Kapow Technologies//
DTD Repository 1.5//EN" "http://www.kapowtech.com/robosuite/
repository_1_5.dtd">

If Management Console is deployed at http://localhost:8080/ManagementConsole,
the requests must be posted to http://localhost:8080/ManagementConsole/secure/
RepositoryAPI?format=xml

Snippets
A number of XML snippets are used throughout the API and the following are snippets used in the
examples. We recommend studying the DTD to understand the structure of the data.
When sending requests, we often need to describe a file. Similarly, responses contain data about a
file. The following table shows snippets that are found shortened in the examples. The constructs
have been added to the 1.5 DTD to assist in project synchronization between Design Studio and
Management Console.

Snippet Name Code

repository-file-request <repository-file-request> <project-
name>Default project</project-name>
<name>ExName</name> <type>snippet</
type> <path>subfolder</path> <last-
modified>2019-02-01 19:26:12.321</last-
modified> <last-modified-by>username</
last-modified-by> <checksum>a342ddaf</
checksum> </repository-file-request>

repository-file <repository-file><name>filename</nam
e> <type>ROBOT</name><last-modified>201
9-02-01 19:26:12.321</last-modified><las
t-modified-by>username</last-modified-
by><checksum>a342ddaf</checksum><dependenc
ies><dependency><name>exsnippet</name><typ
e>snippet</type></dependency> </dependenc
ies></repository-file>

32

http://www.kapowtech.com/robosuite/repository_1_3.dtd

Kofax RPA Developer's Guide - Legacy APIs

REST Operations

Method Example Request Example Response

delete-file (robot) <repository-request> <delete-
file file-type="robot"
silent="true"> <project-
name>Default project</project-
name> <file-name>InputA.type</
file-name> </delete-file> </
repository-request>

<repository-response><delete-
successful/></repository-
response>

delete-file (type) <repository-request> <delete-
file file-type="type"
silent="false"> <project-
name>Default project</project-
name> <file-name>InputA.type</
file-name> </delete-file> </
repository-request>

<repository-response><error
type="file-not-found">Could
not find a Type named
InputA.type in project
'Default project'</error></
repository-response>

delete-file (snippet) <repository-request> <delete-
file file-type="snippet"
silent="true"> <project-
name>Default project</project-
name> <file-name>InputA.type</
file-name> </delete-file> </
repository-request>

<repository-response><delete-
successful/></repository-
response>

delete-file (resource) <repository-request> <delete-
file file-type="resource"
silent="true"> <project-
name>Default project</project-
name> <file-name>InputA.type</
file-name> </delete-file> </
repository-request>

<repository-response><delete-
successful/></repository-
response>

get-projects <repository-request> <get-
projects/> </repository-
request>

<repository-response><project-
list><project-name>Default
project</project-name></
project-list></repository-
response>

get-robots-in-project <repository-request> <get-
robots-in-project> <project-
name>Default project</project-
name> </get-robots-in-project>
</repository-request>

<repository-response><robot-
list><robot><robot-
name>DoNothing.robot</
robot-name><version>10.7</
version><last-
modified>2019-10-11
18:24:12.648</last-modified></
robot></robot-list></
repository-response>

get-robot-signature <repository-request> <get-
robot-signature> <project-
name>Default project</
project-name> <robot-
name>DoNothing.robot</robot-

<repository-response><robot-
signature><robot-name>DoNoth
ing.robot</robot-name><versio
n>10.7</version><last-modifi
ed>2019-10-11 18:24:12.648</
last-modified><input-object
-list><input-object><variab

33

Kofax RPA Developer's Guide - Legacy APIs

Method Example Request Example Response
name> </get-robot-signature>
</repository-request>

le-name>InputA</variable-nam
e><type-name>InputA</type-nam
e><input-attribute-list><inp
ut-attribute><attribute-nam
e>aString</attribute-name><att
ribute-type>Short Text</att
ribute-type></input-attrib
ute><input-attribute><attrib
ute-name>anInt</attribute-nam
e><attribute-type>Integer</att
ribute-type></input-attribute
><input-attribute><attribute
-name>aNumber</attribute-nam
e><attribute-type>Number</att
ribute-type></input-attribute
><input-attribute><attribute
-name>aSession</attribute-nam
e><attribute-type>Session</
attribute-type></input-attrib
ute><input-attribute><attrib
ute-name>aBoolean</attribute
-name><attribute-type>Boolea
n</attribute-type></input-att
ribute><input-attribute><att
ribute-name>aDate</attribute
-name><attribute-type>Date</
attribute-type></input-attrib
ute><input-attribute><attrib
ute-name>aCharacter</attrib
ute-name><attribute-type>Cha
racter</attribute-type></inp
ut-attribute><input-attribute
><attribute-name>anImage</att
ribute-name><attribute-typ
e>Image</attribute-type></inp
ut-attribute></input-attrib
ute-list></input-object><inp
ut-object><variable-name>Inp
utB</variable-name><type-nam
e>InputB</type-name><input-att
ribute-list><input-attribute
 required="true"><attribute
-name>aString</attribute-nam
e><attribute-type>Short Tex
t</attribute-type></input-att
ribute><input-attribute requir
ed="true"><attribute-name>anI
nt</attribute-name><attribute
-type>Integer</attribute-typ
e></input-attribute><input-att
ribute required="true"><attrib
ute-name>aNumber</attribute-
name><attribute-type>Number</
attribute-type></input-attrib
ute><input-attribute requir

34

Kofax RPA Developer's Guide - Legacy APIs

Method Example Request Example Response
ed="true"><attribute-name>aSe
ssion</attribute-name><attrib
ute-type>Session</attribute-
type></input-attribute><input-
attribute required="true"><att
ribute-name>aBoolean</attrib
ute-name><attribute-type>Boo
lean</attribute-type></input-
attribute><input-attribute req
uired="true"><attribute-nam
e>aDate</attribute-name><att
ribute-type>Date</attribute-
type></input-attribute><input-
attribute required="true"><att
ribute-name>aCharacter</attrib
ute-name><attribute-type>Cha
racter</attribute-type></inp
ut-attribute><input-attribute
required="true"><attribute-nam
e>anImage</attribute-name><att
ribute-type>Image</attribute
-type></input-attribute></inp
ut-attribute-list></input-obj
ect></input-object-list><ret
urned-type-list><returned-typ
e><type-name>OutputA</type-
name><returned-attribute-lis
t><returned-attribute><attrib
ute-name>aString</attribute-
name><attribute-type>Short Tex
t</attribute-type></returned-
attribute></returned-attribute
-list></returned-type></return
ed-type-list><stored-type-lis
t/></robot-signature></reposi
tory-response>

get-clusters <repository-request> <get-
clusters/> </repository-
request>

<repository-
response><clusters><cluster
name="Cluster 1"
ssl="false"><roboserver
host="localhost" port="50000"/
></cluster></clusters></
repository-response>

get-current-date <repository-request> <get-
current-date/> </repository-
request>

<repository-response>
<current-date>2019-02-01
19:26:12.321</current-date> </
repository-response>

get-bytes <repository-request> <get-
bytes> <repository-file-
request>EXAMPLE</repository-
file-request> </get-bytes> </
repository-request>

<repository-response> <file-
content> <file-bytes></file-
bytes> </file-content> </
repository-response>

35

Kofax RPA Developer's Guide - Legacy APIs

Method Example Request Example Response

get-project-inventory <repository-request> <get-
project-inventory> <project-
name>Default project</project-
name> </get-project-inventory>
</repository-request>

<repository-response>
<repository-folder> <path></
path> <sub-folders>
-- repository-folders
(recursively) -- </sub-
folders> <files> -- zero,
one or more repository-
file elements -- </files>
<references> -- zero, one or
more repository-file elements
needed by robots in folder --
</references> </repository-
folder> </repository-response>

get-folder-inventory <repository-request> <get-
folder-inventory> <project-
name>Default project</project-
name> <path>subfolder</path>
</get-folder-inventory> </
repository-request>

<repository-response>
<repository-folder> <path></
path> <sub-folders>
-- repository-folders
(recursively) -- </sub-
folders> <files> -- zero,
one or more repository-
file elements -- </files>
<references> -- zero, one or
more repository-file elements
needed by robots in folder --
</references> </repository-
folder> </repository-response>

get-file-inventory <repository-request> <get-
file-inventory> <project-
name>Default project</project-
name> <path>subfolder</
path> <name>robotname</name>
<type>robot</type> </get-
file-inventory> </repository-
request>

<repository-response>
<repository-folder> <path></
path> <sub-folders>
-- repository-folders
(recursively) -- </sub-
folders> <files> -- zero,
one or more repository-
file elements -- </files>
<references> -- zero, one or
more repository-file elements
needed by robots in folder --
</references> </repository-
folder> </repository-response>

update-file <repository-request> <update-
file> <repository-file-
request>...</repository-file-
request> <file-bytes></update-
file> </repository-request>

<repository-response> <update-
successful/> </repository-
response>

get-clusters <repository-request>
<get-clusters online-
roboserver='true'/> </
repository-request>

<repository-response>
<clusters> <cluster
name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> </cluster>
</clusters> </repository-
response>

36

Kofax RPA Developer's Guide - Legacy APIs

Method Example Request Example Response

add-roboserver <repository-request> <add-
roboserver> <cluster
name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> </cluster>
<roboserver host='localhost'
port='50001' primary='true'/
> </add-roboserver> </
repository-request>

<repository-response>
<clusters> <cluster
name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> <roboserver
host='localhost' port='50001'
primary='true'/> </cluster>
</clusters> </repository-
response>

delete-roboserver <repository-request> <add-
roboserver> <cluster
name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> <roboserver
host='localhost' port='50001'
primary='true'/> </cluster>
<roboserver host='localhost'
port='50001' primary='true'/
> </add-roboserver> </
repository-request>

<repository-response>
<cluster name='ClusterName'
ssl='false'> <roboserver
host='localhost' port='50000'
primary='true'/> </cluster> </
repository-response>

delete-folder <repository-request> <delete-
folder> <project-name>Default
project</project-name>
<path>path/to/empty/folder</
path> </delete-folder> </
repository-request>

<repository-response> <delete-
successful/> </repository-
response>

move-file <repository-request> <move-
file> <repository-file-
request>...</repository-
file-request> <path>new/
destination/path</path> </
move-file> </repository-
request>

<repository-response> <update-
successful/> </repository-
response>

Rename-robot <repository-request> <rename-
robot> <repository-file-
request>...</repository-
file-request> <file-
name>newnameofrobot</file-
name> </rename-robot> </
repository-request>

<repository-response> <update-
successful/> </repository-
response>

 Robot, type, snippet, and resource names must be specified as full path. The full path is
relative to your project folder.

The deployment is done by posting the raw bytes (the octet-stream is sent as a post body) to
the following URLs. The following is an example where the Repository is deployed on http://
localhost:8080/ManagementConsole.

37

Kofax RPA Developer's Guide - Legacy APIs

Methods of the deploy operations:

Operation URL

deploy robot http://localhost:8080/ManagementConsole/secure/RepositoryAPI?
format=bytes&operation=deployRobot&projectName=Default
project&fileName=DoNothing.robot&failIfExists=true

deploy type http://localhost:8080/ManagementConsole/secure/RepositoryAPI?
format=bytes&operation=deployType&projectName=Default
project&fileName=InputA.type&failIfExists=true

deploy Snippet http://localhost:8080/ManagementConsole/secure/RepositoryAPI?
format=bytes&operation=deploySnippet&projectName=Default
project&fileName=A.snippet&failIfExists=true

deploy resource http://localhost:8080/ManagementConsole/secure/RepositoryAPI?
format=bytes&operation=deployResource&projectName=Default
project&fileName=resource.txt&failIfExists=true

deploy library http://localhost:8080/ManagementConsole/secure/RepositoryAPI?
format=bytes&operation=deployLibrary&projectName=Default
project&fileName=NA&failIfExists=true

If authentication is enabled on Management Console, the URL http://localhost:8080/
ManagementConsole/secure/RepositoryAPI is protected by basic authentication.
This allows you to include credentials in the URL in the following way: http://
username:password@localhost:8080/ManagementConsole/secure/RepositoryAPI.

Management Console API
It is possible to queue execution of robots on the Management Console. Instead of running the
robot directly on the RoboServer, the robot is placed in the queue on the Management Console. Be
aware that some features such as setting the execute ID, defining the database connections, setting
the max run time, and forcing a robot to stop on API exceptions cannot be controlled when queuing
execution of robots. The following are benefits of queuing:

• Robots are queued even when resources such as devices are not available.
• Robots are routed to the correct RoboServer when multiple versions of RoboServers are installed.
• You do not need to manage clusters while building an application. The clusters are managed on

the project level on the Management Console.

Configure Java API
To configure Java API for QueuedRequests:

1. Compile the code.

2. Add the location of the .jar file to the classpath when running the code.

3. Create the queue.
See the detailed information and examples that follow.

38

Kofax RPA Developer's Guide - Legacy APIs

Queue a robot run
Use the QueuedRequest class to queue a robot run on the Management Console. For detailed
information, refer to the Kofax RPA Java API Documentation.

 Code is case-sensitive.

JAVA API Example:
RepositoryHttpClientProvider repository = new RepositoryRobotLibrary("http://
localhost:50080/", "Default project", 60000, "admin", "admin");
QueuedRequest request = new QueuedRequest("myfolder/myrobot.robot", "Default project",
 repository);
request.setPriority(QueuedRequest.Priority.HIGH);
RQLResult result = request.execute();

Constructors

Constructor Description

QueuedRequest(String robotURL, String
projectName, RepositoryHttpClientProvider
httpClientProvider)

Creates a new QueuedRequest with for the specified
robot.
Valid entries are comprised of three required
parameters specifying the robot URL, project name,
and repository.
Properties extend the request. See the following table
for Properties parameters.

QueuedRequest(String robotURL, String
projectName, RepositoryHttpClientProvider
httpClientProvider, Priority priority,
long timeout)

Creates a new QueuedRequest with the specified
robot URL, priority, and timeout time.

Properties

Property Description

getPollingIntervalMillis() /
setPollingIntervalMillis(int
pollingIntervalMillis)

Updates to the robot run status. Returns values and
API exception errors by polling. This function gets the
interval in milliseconds between polls. Short intervals
cause more load on the Management Console but
increase the rate of updates per request. The default
value is 1000 (1 second).

getRobotURL() / setRobotURL(String
robotName)

The name of the robot to run, including a path if the
robot resides in a folder.

 The URL part of the property is not an actual
URL. The name was chosen for reasons of
backward compatibility.

39

https://docshield.kofax.com/Portal/Products/RPA/11.5.0-nlfihq5gwr/RPA.htm

Kofax RPA Developer's Guide - Legacy APIs

Property Description

getPriority() / setPriority(Priority
priority)

The priority of the request in the queue: MINIMUM,
LOW, MEDIUM, HIGH, or MAXIMUM. The default value is
MEDIUM.

setStopRobotOnApiException(boolean
stopOnError)

When set, the robot is stopped on the RoboServer
after the first API exception is sent to the client. The
default value is true.

getTimeout() / setTimeout(long timeout) The maximum time in seconds that the robot waits
in the queue for a RoboServer to run the robot. The
default value is 600 (10 minutes).

Methods

Method Description

createInputVariable(String name) Creates a new Input Object with the specified name,
and returns an RQLObjectBuilder that you can use to
build the object.

createInputVariable(String name, RQLObject
rqlObject)

Creates a new Input Object with the specified name
from rqlObject. This object is useful if responses
from one robot are used as input to another robot.

createOAuthInputVariable(String name,
String userName, String applicationName)

Creates an input variable for an OAUTH input type
that looks up the OAuth details on the Management
Console, based on the user name and application
name. Ensure that on the Management Console the
application and OAuth user are linked to the same
project as the robot you are requesting to run.

execute() Places the robot in the queue for running, then waits
for it to terminate.

execute(RobotResponseHandler handler) Places the robot in the queue for running, then calls
the handler at various points during the request.

40

Chapter 2

.NET Programmer's Guide

This chapter describes how to execute robots using the Kofax RPA legacy .NET API. The guide
assumes that you know how to write simple robots, and that you are familiar with the C#
programming language.

You can find information about specific .NET classes in the compiled help, robosuite-dotnet-
api.chm, located in your offline documentation folder. For more details, see the Kofax RPA
Installation Guide.

.NET Basics
Using the .NET API, any .NET-based application can become a client to an RPA instance. The .NET API
targets .NET Standard 2.0, building applications on either .NET (Core) 2.0 to 6.0, or .NET Framework
4.7.2 and higher.

In addition to running robots that store data in a database, you can also have the robots return data
directly back to the client application. Here are some examples:

• Use multiple robots to do a search that aggregates results from multiple sources in real time.
• Run a robot in response to an event on your application back end. For example, run a robot when

a new user signs up to create accounts on web-based systems not integrated directly into your
back end.

This guide introduces the core classes, and how to use them for executing robots. It also describes
how to provide input to robots and control their execution on a RoboServer.

The .NET API is a .dll file that is located in API/legacy/robosuite-dotnet-api/lib/
robosuite-dotnet-api.dll inside the Kofax RPA installation folder (see the "Important Folders
in Kofax RPA" topic in the Installation Guide for details). All examples in this guide can be found in
API/legacy/robosuite-dotnet-api/examples. The Newtonsoft.JSon.dll is a required third-
party library located with the .NET API file.

First Example
The following is the code required to execute the robot named NewsMagazine.robot, which is
located in the Tutorials folder of the default project. The robot outputs its results using the Return
Value step action, which makes it easy to handle the output programmatically using the API. Other
robots (typically those run in a schedule by the Management Console) store their data directly in a
database using the Store in Database step action, in which case data collected by the robot is not
returned to the API client.

41

Kofax RPA Developer's Guide - Legacy APIs

In the following example, the NewsMagazine robot is executed and the output is processed
programmatically.

Execute a Robot without input:
using System;
 using System.Collections.Generic;
 using System.Text;
 using Com.KapowTech.RoboSuite.Api;
 using Com.KapowTech.RoboSuite.Api.Repository.Construct;
 using Com.KapowTech.RoboSuite.Api.Construct;

 namespace Examples
 {
 class Program
 {
 static void Main(string[] args)
 {
 var server = new RoboServer("localhost", 50000);
 var ssl = false;
 var cluster = new Cluster("MyCluster", new RoboServer[]{ server}, ssl);

 Request.RegisterCluster(cluster); // you can only register a cluster
 once per application

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.RobotLibrary = new DefaultRobotLibrary();
 RqlResult result = request.Execute("MyCluster");

 foreach (RqlObject value in result.GetOutputObjectsByName("Post")) {
 var title = value["title"];
 var preview = value["preview"];
 Console.WriteLine(title + ", " + preview);
 }
 Console.ReadKey();
 }
 }
 }

The following table lists the classes involved and their responsibilities.

RoboServer This is a simple value object that identifies a RoboServer that can execute
robots. Each RoboServer must be activated by a Management Console
and assigned KCU before use.

Cluster A cluster is a group of RoboServers functioning as a single logical unit.

Request This class is used to construct the robot request. Before you can execute
any requests, you must register a cluster with the Request class.

DefaultRobotLibrary A robot library instructs RoboServer where to find the robot identified in
the request. Later examples explore the various robot library types and
when/how to use them.

RQLResult This contains the result of a robot execution. The result contains value
responses, log, and server messages.

RQLObject Each value that is returned from a robot using the Return Value action
can be accessed as an RQLObject.

The first line tells the API that our RoboServer is running on localhost port 50000.
var server = new RoboServer("localhost", 50000);

42

Kofax RPA Developer's Guide - Legacy APIs

The following lines define a cluster with a single RoboServer. The cluster is registered with the
Request class, allowing you to execute request on this cluster. Each cluster can only be registered
once per application, which is done during the initialization of the application.

Registering a cluster:
var ssl = false;
 var cluster = new Cluster("MyCluster", new RoboServer[]{ server}, ssl);
 Request.RegisterCluster(cluster);

The followed code creates a request that executes the robot named NewsMagazine.robot located
at Library:/Tutorials Library:/ refers to the robot Library configured for the request. Here
the DefaultRobotLibrary is used, which instructs the RoboServer to look for the robot in the
servers local file system. See Robot Libraries for details on how to use robot libraries.
var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.RobotLibrary = new DefaultRobotLibrary();

The next line executes the robot on the cluster named MyCluster (the cluster registered previously)
and returns the result once the robot is done. If an error occurs while the robot is executing, an
exception is thrown here.
RqlResult result = request.Execute("MyCluster");

Finally we process the extracted values. First, we get all extracted values of the type named Post and
iterate through them. For each RQLObject, we access the attributes of the Post type and print the
result. Attributes and mappings are discussed in a later section.
foreach (RqlObject value in result.GetOutputObjectsByName("Post")) {
 var title = value["title"];
 var preview = value["preview"];
 Console.WriteLine(title + ", " + preview);

Robot Input
Most robots executed through the API are parametrized through input, such as a search keyword,
or login credentials. Input to a robot is part of the request to RoboServer and is provided using the
createInputVariable method on the request.

Input using implicit RQLObjectBuilder
var request = new Request("Library:/Tutorials/Input.robot");
 request.CreateInputVariable("userLogin").SetAttributeEntry
 ("username", "scott").SetAttributeEntry("password", "tiger");

In the preceding code, we create a Request and use CreateInputVariable to create an input
variable named userLogin. We then use setAttribute to configure the user name and password
attributes of the input variable.

The preceding example is a common shorthand notation, but can also be expressed in more detail
by using the RqlObjectBuilder:
var request = new Request("Library:/NewsMagazine.robot");
 RqlObjectBuilder userLogin = request.CreateInputVariable("userLogin");
 userLogin.SetAttributeEntry("username", "scott");
 userLogin.SetAttributeEntry("password", "tiger");

The two examples are identical. The first utilizes the cascading method invocation on the
anonymous RqlObjectBuilder and is therefore shorter.

43

Kofax RPA Developer's Guide - Legacy APIs

When RoboServer receives this request the following occurs:
• RoboServer loads Input.robot (from a RobotLibrary configured for the request).
• RoboServer verifies that the robot has a variable named userLogin and that this variable is

marked as input.
• RoboServer now verifies that the attributes that we configured using setAttribute are

compatible with the type of variable userLogin. As a result the type must have attributes named
user name and password and that they must both be text-based attributes (the next section
describes the mapping between API and Design Studio attributes).

• If all input variables are compatible, RoboServer starts executing the robot.

If a robot requires multiple input variables, you must create all of them to execute the robot. You
only have to configure required attributes; any no-required attributes that you do not configure
through the API will just have a null value. If you have a robot that requires login to both Facebook
and Twitter, you could define the input as follows.
Request request = new Request("Library:/Input.robot");
 request.CreateInputVariable("facebook").SetAttributeEntry
 ("username", "scott").SetAttributeEntry("password", "facebook123");
 request.CreateInputVariable("twitter").SetAttributeEntry
 ("username", "scott").SetAttributeEntry("password", "twitter123");

Attribute Types
When you define a new type in Design Studio, you select an attribute type for each attribute. Some
attributes can contain text such as Short Text, Long Text, Password, HTML, XML, and when used
inside a robot, there may be requirements to the text stored in these attributes. If you store text
in an XML attribute, the text must be a valid XML document. This validation occurs when the type
is used inside a robot, but as the API does not know anything about the type, it does not validate
attribute values in the same manner. As a result, the API only has eight attribute types and Design
Studio has 19 available types. This table shows the mapping between the API and Design Studio
attribute types.

API to Design Studio mapping

API Attribute Type RoboServer Attribute Type

Text Short Text, Long Text, Password, HTML, XML, Properties, Language, Country,
Currency, Refind Key

Integer Integer

Boolean Boolean

Number Number

Character Character

Date Date

Session Session

Binary Binary, Image, PDF

The API attribute types are then mapped to .NET in the following way.

44

Kofax RPA Developer's Guide - Legacy APIs

.Net Types for Attributes

API Attribute Type Java Class

Text System.String (string)

Integer System.Int64

Boolean System.Boolean (bool)

Number System.Double (double)

Character System.Char (char)

Date System.DateTime

Session Com.Kapowtech.Robosuite.Api.Construct.Session

Binary Com.Kapowtech.Robosuite.Api.Construct.Binary

The RqlObjectBuilder setAttribute method is overloaded so you do not need to specify the
attribute type explicitly when configuring an attribute through the API, as long as the right .NET
class is used as an argument. Here is an example that shows how to set the attributes for an object
with all possible Design Studio attribute types.

Recommended usage of setAttribute:
RqlObjectBuilder inputBuilder = request.CreateInputVariable("AllTypes");
 inputBuilder.SetAttributeEntry("anInt", 42L);
 inputBuilder.SetAttributeEntry("aNumber", 12.34d);
 inputBuilder.SetAttributeEntry("aBoolean", true);
 inputBuilder.SetAttributeEntry("aCharacter", 'c');
 inputBuilder.SetAttributeEntry("aShortText", "some text");
 inputBuilder.SetAttributeEntry("aLongText", "a longer text");
 inputBuilder.SetAttributeEntry("aPassword", "secret");
 inputBuilder.SetAttributeEntry("aHTML", "<html>text</html>");
 inputBuilder.SetAttributeEntry("anXML", "<tag>text</tag>");
 inputBuilder.SetAttributeEntry("aDate", DateTime.Now);
 inputBuilder.SetAttributeEntry("aBinary", (Binary) null);
 inputBuilder.SetAttributeEntry("aPDF", (Binary)null);
 inputBuilder.SetAttributeEntry("anImage", (Binary)null);
 inputBuilder.SetAttributeEntry("aProperties", "name=value\nname2=value2");
 inputBuilder.SetAttributeEntry("aSession", (Session)null);
 inputBuilder.SetAttributeEntry("aCurrency", "USD");
 inputBuilder.SetAttributeEntry("aCountry", "US");
 inputBuilder.SetAttributeEntry("aLanguage", "en");
 inputBuilder.SetAttributeEntry("aRefindKey", "Never use as input");

In the preceding example, we have to cast null values because the C# compiler cannot otherwise
determine which of the overloaded version of SetAttributeEntry method to call. However, as
unconfigured attributes are automatically null, you never need to set null explicitly.

It is possible to specify the Attribute and AttributeType explicitly when creating input using the
API. This approach is not recommended, but may be needed in rare cases, and would look similar to
the following.

Not recommended usage of setAttribute
RqlObjectBuilder inputBuilder = request.CreateInputVariable("alltypes");
 inputBuilder.SetAttributeEntry(new AttributeEntry("anInt", "42",
 AttributeEntryType.Integer));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aNumber", "12.34",

45

Kofax RPA Developer's Guide - Legacy APIs

 AttributeEntryType.Number));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aBoolean", "true",
 AttributeEntryType.Boolean));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aCharacter", "c",
 AttributeEntryType.Character));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aShortText", "some text",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aLongText", "a longer text",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aPassword", "secret",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aHTML", "<html>text</html>",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("anXML", "<tag>text</tag>",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aDate",
 "2012-01-15 23:59:59.123", AttributeEntryType.Date));

 inputBuilder.SetAttributeEntry(new AttributeEntry("aBinary", null,
 AttributeEntryType.Binary));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aPDF", null,
 AttributeEntryType.Binary));
 inputBuilder.SetAttributeEntry(new AttributeEntry("anImage", null,
 AttributeEntryType.Binary));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aProperties",
 "name=value\nname2=value2", AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aCurrency", "USD",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aCountry", "US",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aLanguage", "en",
 AttributeEntryType.Text));
 inputBuilder.SetAttributeEntry(new AttributeEntry("aRefindKey",
 "Never use this as input", AttributeEntryType.Text));

All attribute values must be provided in the form of strings. The string values are then converted to
the appropriate .NET objects based on the AttributeEntryType provided. It is only useful if you
build other generic APIs on top of the Kofax RPA .NET API.

Execution Parameters
In addition to the CreateInputVariable method, the Request contains a number of properties
that controls how the robot executes on a RoboServer.

Execution Control Methods on Request

ApiKey Authorizes access to resources such as RFS, DTS, and
the password store.
If omitted, the credentials provided on the connection
are used.

MaxExecutionTime Controls the execution time of the robot in seconds.
When this time is elapsed, the robot is stopped
by RoboServer. The timer does not start until the
robot begins to execute, so if the robot is queued on
RoboServer, this is not taken into account.

46

Kofax RPA Developer's Guide - Legacy APIs

StopOnConnectionLost When true (default), the robot stops if RoboServer
discovers that the connection to the client application
is lost. If you set this value to false and your code is
not written to handle this, your application may not
perform as expected.

StopRobotOnApiException When true (default), the robot is stopped by
RoboServer after the first API exception is raised. By
default, most steps in a robot raise an API exception
if the step fails to execute. Configure this value on the
Error Handling tab for the step.
When set to false, the robot continues to execute
regardless of API exceptions. However, unless your
application is using the IRobotResponseHandler for
streaming the results, an exception is still thrown by
Execute(). Be cautious when setting it to false.

Username, Password Sets the RoboServer credentials. RoboServer can
be configured to require authentication. When this
option is enabled, the client must provide credentials
or RoboServer rejects the request.

RobotLibrary Assigns a RobotLibrary to the request. A robot
library instructs RoboServer where to find the robot
identified in the request. For more examples related
to the various library types and their usage, see Robot
Libraries.

ExecutionId Allows you to set the executionId for this request.
If you do not provide it, RoboServer generates it
automatically. The execution ID is used for logging
and also needed to stop the robot programmatically.
The ID must be globally unique (over time). If two
robots use the same execution ID, the logs will be
inconsistent.
Setting this property is useful if your robots are part
of a larger workflow and you already have a unique
identifier in your client application, because it allows
you to join the robot logs with the rest of the system.

setProject(String) This method is used solely for logging purposes.
Management Console uses this field to link log
messages to project, so the log views can filter by
project.
If your application is not using the
RepositoryRobotLibrary, you may set this value to
inform the RoboServer logging system which project
(if any) this robot belongs to.

Robot Libraries
In Design Studio, robots are grouped into projects. If you look in the file system, you will see that
these projects are represented by a folder with the only constraint that it must contain a folder
named Library.

When you build the execute request for RoboServer, you identify the robot by a robot URL:

47

Kofax RPA Developer's Guide - Legacy APIs

Request request = new Request("Library:/Input.robot");

Here, Library:/ is a symbolic reference to a robot library, in which the RoboServer should look for
the robot. The RobotLibrary is then specified on the builder in the following way:

request.setRobotLibrary(new DefaultRobotLibrary());

Three different robot library implementations are available. The one to select depends on you
deployment environment.

Robot Libraries

Library Type Description

DefaultRobotLibrary This library configures RoboServer to look for the
robot in the current project folder. This folder is
defined in the Settings application.
If you have multiple RoboServers, you must deploy
your robots on all RoboServers.
This robot library is not cached, so the robot is
reloaded from disk with every execution. This
approach makes the library usable in a development
environment where robots change often, but not
suitable for a production environment.

EmbeddedFileBasedRobotLibrary This library is embedded in the execute request
sent to RoboServer. To create this library, you need
to create a .zip file containing the robots and all its
dependencies (types, snippets and resources). This
can be done the Tools > Create Robot Library File
menu in Design Studio.
The library is sent with every request, which adds
some overhead for large libraries, but the libraries
are cached on RoboServer, which offers best possible
performance.
One strength is that robots and code can be deployed
as a single unit, which offers clean migration from QA
environment to production environment. However, if
the robots change often, you have to redeploy them
often.
You can use the following code to configure the
embedded robot library for your request.
var request = new Request
 ("Library:/Tutorials/NewsMagazine.
 robot");
 var stream = new FileStream
 ("c:\\embeddedLibrary.robotlib",
 FileMode.Open);
 request.RobotLibrary =
 new EmbeddedFileBasedRobotLibrary
 (stream);

48

Kofax RPA Developer's Guide - Legacy APIs

Library Type Description

RepositoryRobotLibrary This is the most flexible RobotLibrary.
This library uses the built-in repository of
Management Console as a robot library. When
you use this library, RoboServer contacts the
Management Console that sends a robot library
containing the robot and its dependencies.
Caching occurs on a per robot basis, inside both
Management Console and RoboServer. Inside
Management Console, the generated library is
cached based on the robot and its dependencies. On
RoboServer, the cache is based on a timeout, so it
does not have to ask the Management Console for
each request. In addition, the library loading between
RoboServer and Management Console uses HTTP
public/private caching, to further reduce bandwidth.
If NewsMagazine.robot is uploaded to the
Management Console, you can use the repository
robot library when executing the robot:
var request = new Request
 ("Library:/Tutorials/NewsMagazine.
 robot");
 request.RobotLibrary =
 new RepositoryRobotLibrary
 ("http://localhost:50080",
 "Default Project", 60000);

This command instructs RoboServer to load the robot
from a local Management Console and caches it for
one minute before checking with the Management
Console to see if a new version of the robot (its type
and snippets) is available.
In addition, any resource loaded through the
Library:/ protocol will cause RoboServer request
the resource directly from the Management Console.

.NET Advanced
This section describes advanced API features, including output streaming, logging and SSL
configuration, as well as parallel execution.

Load Distribution
Inside the RequestExecutor, the executor is given an array of RoboServers. As the executor is
constructed, it tries to connect to each RoboServer. Once connected, it sends a ping request to each
RoboServer to discover how the server is configured.

Load balanced executor
RoboServer prod = new RoboServer("prod.kapow.local", 50000);
 RoboServer prod2 = new RoboServer("prod2.kapow.local", 50000);
 Cluster cluster = new Cluster("Prod", new RoboServer[]{ prod, prod2}, false);

49

Kofax RPA Developer's Guide - Legacy APIs

 Request.RegisterCluster(cluster);

Load is distributed to each online RoboServer in the cluster based on the number of unused
execution slots on the RoboServer. The next request is always distributed to the RoboServer with
the most available slots. The number of available execution slots is obtained through the initial
ping response, and the executor keeps track of each robot it starts, and when it is completed. The
number of execution slots on a RoboServer is determined by the Max concurrent robots setting in
the Management Console > Admin > RoboServers section.

If a RoboServer goes offline, it does not receive any robot execution requests before it successfully
responded to the ping request.

One Client Rule
By default, API connections are limited to 20 connections. However, to ensure the best
performance, we recommend that you have only one API client using a given cluster of
RoboServers. If you have too many JVMs running robots against the same RoboServers, it will result
in reduced performance.

Although the following is not recommended, if your environment requires the
handling of a higher volume, you can configure the connection limit by adjusting the
kapow.max.multiplexing.clients system property in the common.conf file.

Data Streaming
If you need to present the results from a robot execution in real-time, you can use the API to return
the extracted values immediately instead of waiting for the robot to finish its execution and access
the RqlResult.

The API offers the possibility to receive a callback every time the API receives a value that was
returned by the robot. Do this through the IRobotResponseHandler interface.

Response streaming usingAbstractFailFastRobotResponseHandler
using System;
 using Com.KapowTech.RoboSuite.Api;
 using Com.KapowTech.RoboSuite.Api.Repository.Construct;
 using Com.KapowTech.RoboSuite.Api.Construct;
 using System.IO;
 using Com.KapowTech.RoboSuite.Api.Engine.Hotstandby;

 namespace Examples
 {

 public class DataStreaming {

 public static void Main(String[] args) {

 var server = new RoboServer("localhost", 50000);
 var cluster = new Cluster("MyCluster", new RoboServer[] { server },
 false);
 Request.RegisterCluster(cluster);

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 IRobotResponseHandler handler = new SampleResponseHandler();
 request.Execute("MyCluster", handler);
 }

50

Kofax RPA Developer's Guide - Legacy APIs

 }

 public class SampleResponseHandler : AbstractFailFastRobotResponseHandler
 {
 override public void HandleReturnedValue(RobotOutputObjectResponse
 response, IStoppable stoppable)
 {
 var title = response.OutputObject["title"];
 var preview = response.OutputObject["preview"];
 Console.WriteLine(title + ", " + preview);
 }
 }
 }

The preceding example uses the second execute method of the Request, which
expects a RobotResponseHandler in addition to the name of the cluster to execute
the robot on. In this example, create a IRobotResponseHandler by extending
AbstractFailFastRobotResponseHandler, which provides default error handling, to handle the
values returned by the robot.

The handleReturnedValue method is called whenever the API receives a returned value from
RoboServer. The AbstractFailFastRobotResponseHandler used in this example throws
exceptions in the same way as the non-streaming execute method. This means that an exception is
thrown in response to any API exceptions generated by the robot.

The IRobotResponseHandler has several methods which can be grouped into three categories.

Robot life cycle events
Methods called when the robot execution state change on RoboServer, such as when it starts and
finishes its execution.

Robot data events
Methods which are called when the robot returns data or errors to the API.

Additional error handling
Methods which are called either due to an error inside RoboServer or in the API.

RobotResponseHandler - robot life cycle events

Method name Description

void requestSent(RoboServer roboServer,
ExecuteRequest request)

Called when the RequestExecutor finds the server
that executes the request.

void requestAccepted(String executionId) Called when the found RoboServer accepts the
request and puts it into a queue.

void RobotStarted(IStoppable stoppable) Called when the RoboServer begins to execute the
robot. This usually occurs immediately after the robot
is queued, unless the RoboServer is under heavy load,
or used by multiple API clients.

51

Kofax RPA Developer's Guide - Legacy APIs

Method name Description

void robotDone(RobotDoneEvent reason) Called when the robot is done executing on
RoboServer. The RobotDoneEvent is used to specify
if the execution terminated normally, due to an error,
or if it was stopped.

RobotResponseHandler - robot data events

Method name Description

void
HandleReturnedValue(RobotOutputObjectResponse
response, IStoppable stoppable)

Called when the robot is executed a Return Value
action and the value has been returned via the socket
to the API.

void HandleRobotError(RobotErrorResponse
response, IStoppable stoppable)

Called when the robot raises an API exception.
Under normal circumstances the robot
stops executing after the first API exception.
This behavior can be overridden by using
Request.StopRobotOnApiException = false,
in which case this method is called multiple times.
This is useful if you need a data streaming robot to
continue to execute regardless of any generated
errors.

void HandleWriteLog(RobotMessageResponse
response, IStoppable stoppable)

Called if the robot executes the Write Log action. This
is useful to provide additional logging info from a
robot.

RobotResponseHandler - additional error handling

Method name Description

void HandleServerError(ServerErrorResponse
response, IStoppable stoppable)

Called if RoboServer generates an error. For example,
if the server is too busy to process any requests, or if
an error occurs inside RoboServer, which prevents it
from starting the robot.

void handleError(RQLException e,
IStoppable stoppable)

Called if an error occurs inside the API. Most
commonly if the client loses the connection to
RoboServer.

Many of the methods include a IStoppable object, which can be used to stop after a specific error
occurred or a value was returned.

Some of these methods give you the ability to throw an RQLException. The thread that calls the
handler is the thread that calls Request.Execute(), which means that any exceptions thrown
can overload the call stack. If you throw an exception in response to handleReturnedValue,
handleRobotError or handleWriteLog, it is your responsibility to invoke Stoppable.stop(), or
the robot may continue to execute even though the call to Request.Execute() is completed.

Data streaming is most often used in one of the following use cases.
• Ajax based web application, where results are presented to the user in real-time. If data is not

streamed, results cannot be shown until the robot is done running.

52

Kofax RPA Developer's Guide - Legacy APIs

• Robots that return so much data that the client would not be able to hold it all in memory
throughout the robot execution.

• Processes that need to be optimized so the extracted values are processed in parallel with the
robot execution.

• Processes that store data in databases in a custom format.
• Robots that should ignore or require custom handling of API exceptions (see the following

example).

Response and error collecting using AbstractFailFastRobotResponseHandler:
using System;
 using System.Collections;
 using System.Collections.Generic;
 using Com.KapowTech.RoboSuite.Api;
 using Com.KapowTech.RoboSuite.Api.Repository.Construct;
 using Com.KapowTech.RoboSuite.Api.Construct;
 using System.IO;
 using Com.KapowTech.RoboSuite.Api.Engine.Hotstandby.Interfaces;

 namespace Examples
 {
 public class DataStreaming
 {

 public static void Main(String[] args)
 {

 var server = new RoboServer("localhost", 50000);
 var cluster = new Cluster("MyCluster", new RoboServer[] { server },
 false);
 Request.RegisterCluster(cluster);

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.StopRobotOnApiException = false; // IMPORTANT!!

 ErrorCollectingRobotResponseHandler handler =
 new ErrorCollectingRobotResponseHandler();
 request.Execute("MyCluster", handler); // blocks until robot is
 done, or handler throws an exception

 Console.WriteLine("Extracted values:");
 foreach (RobotOutputObjectResponse response in handler.
 GetOutput())
 {
 var title = response.OutputObject["title"];
 var preview = response.OutputObject["preview"];
 Console.WriteLine(title + ", " + preview);
 }

 Console.WriteLine("Errors:");
 foreach (RobotErrorResponse error in handler.GetErrors())
 {
 Console.WriteLine(error.ErrorLocationCode + ", " + error.
 ErrorMessage);
 }
 }
 }

 public class ErrorCollectingRobotResponseHandler :
 AbstractFailFastRobotResponseHandler {

53

Kofax RPA Developer's Guide - Legacy APIs

 private IList<RobotErrorResponse> _errors =
 new List<RobotErrorResponse>();
 private IList<RobotOutputObjectResponse> _output =
 new List<RobotOutputObjectResponse>();

 override public void HandleReturnedValue(RobotOutputObjectResponse
 response, IStoppable stoppable) {
 _output.Add(response);
 }

 override public void HandleRobotError(RobotErrorResponse response,
 IStoppable stoppable) {
 // do not call super as this will stop the robot
 _errors.Add(response);
 }

 public IList<RobotErrorResponse> GetErrors() {
 return _errors;
 }

 public IList<RobotOutputObjectResponse> GetOutput() {
 return _output;
 }
 }
 }

The preceding example shows how to use a IRobotResponseHandler that collects returned
values and errors. This type of handler is useful if the robot should continue to execute even when
error are encountered, which can be useful if the website is unstable and occasionally times out.
Notice that only robot errors (API exceptions) are collected by the handler. If the connection to
RoboServer is lost, Request.Execute() still throws an RQLException, and the robot is stopped by
RoboServer.

For more details, see the IRobotResponseHandler documentation.

SSL
The API communicates with RoboServer through an RQLService, which is a RoboServer
component that listens for API requests on a specific network port. When you start a RoboServer,
you specify if it should use the encrypted SSL service, or the plain socket service, or both (using two
different ports). All RoboServers in a cluster must be running the same RQLService (although the
port may be different).

Assuming a RoboServer is started with the SSL RQLService on port 50043:

RoboServer -service ssl:50043

The following code can be used.
RoboServer server = new RoboServer("localhost", 50043);
 boolean ssl = true;
 Cluster cluster = new Cluster("MyCluster", new RoboServer[] {server}, ssl);
 Request.RegisterCluster(cluster);

You need to create the cluster as an SSL cluster and specify the SSL port used by each RoboServer.
Now all communication between RoboServer and the API will be encrypted.

54

Kofax RPA Developer's Guide - Legacy APIs

In addition to data encryption, SSL offers the possibility to verify the identity of the remote
party. This type of verification is very important on the Internet. Most often your API client and
RoboServers are on the same local network, so you rarely need to verify the identity of the other
party, but the API supports this feature should it become necessary.

See Examples to find out how to compile and run the included SSL example.

Repository Integration
In Management Console, you also specify clusters of RoboServers, which are used to execute
scheduled robots, as well as robots executed as REST services. The API enables you to use the
RepositoryClient to obtain cluster information from Management Console. For more details, see
the RepositoryClient documentation.

Repository Integration
using System;
 using Com.KapowTech.RoboSuite.Api;
 using Com.KapowTech.RoboSuite.Api.Construct;
 using Com.KapowTech.RoboSuite.Api.Repository.Engine;

 namespace Examples
 {
 public class RepositoryIntegration
 {
 public static void Main(String[] args)
 {
 string userName = "admin";
 string password = "admin";
 RepositoryClient client = new RepositoryClient
 ("http://localhost:50080", userName, password);

 Request.RegisterCluster(client, "Production");
 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 var result = request.Execute("Production");
 Console.WriteLine(result.ToString());
 }
 }
 }

The preceding example shows how to create a RepositoryClient that connects to a Management
Console deployed on localhost port 50080.

When we register the RepositoryClient, we specify the name of a cluster that exists on the
Management Console. It then queries the Management Console to get a list of RoboServers
configured for this cluster, and check every two minutes to see if the cluster configuration is
updated on the Management Console.

This integration allows you to create a cluster on Management Console that you can change
dynamically using the Management Console user interface. When you use a Management Console
cluster with the API, usage should be exclusive, and you should not use it for scheduling robots, as
this would break the One Client rule.

55

Kofax RPA Developer's Guide - Legacy APIs

Executor Logger
When you execute a request, the execute method throws an exception if a robot generates an
error. Other types of errors and warnings are reported through the ExecutorLogger interface. In
the previous examples, ExecutionLogger was not provided when executing robots, which is the
default implementation that writes to System.out.

The following is an example of how the ExecutorLogger reports if one of RoboServers goes
offline. This example configures a cluster with a RoboServer that is not online.

ExecutorLogger, offline server example:
RoboServer rs = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("name", new RoboServer[]{rs}, false);
 Request.RegisterCluster(cluster);

If you run this example, it writes the following to the console.

ExecutorLogger, offline RoboServer console output:
RoboServer[Host=localhost, Port=50000]' went offline.
 Com.KapowTech.RoboSuite.Api.Engine.UnableToConnectException:...........

If you do not need your application to write directly to System.out, you can provide a different
IExecutorLogger implementation when registering the cluster:

Use DebugExecutorLogger:
Request.RegisterCluster(cluster, new DebugExecutorLogger());

This example uses the DebugExecutorLogger() that also writes to System.out, but only if
the API debugging is enabled. Alternatively, you can provide your own implementation of the
ExecutorLogger to control how error messages should be handled.

Under the Hood
This section explains what is happening under the hood when you register a cluster and execute
requests.

When you register a cluster with the request, a RequestExecutor is created behind the scene. This
RequestExecutor is stored in a Map using the cluster name as key. When a request is executed,
the provided cluster name is used to find the associated RequestExecutor and execute the
request.

Normal execution
public static void Main(String[] args)
 {
 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 Request.RegisterCluster(cluster);

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.RobotLibrary = new DefaultRobotLibrary();
 var result = request.Execute("MyCluster");

56

Kofax RPA Developer's Guide - Legacy APIs

 Console.WriteLine(result);
 }

Now write the same example using the hiddenRequestExecutor directly.

Under the hood execution:
public static void Main(String[] args)
 {
 RoboServer server = new RoboServer("localhost", 50000);
 Cluster cluster = new Cluster("MyCluster", new RoboServer[]{ server}, false);
 RequestExecutor executor = new RequestExecutor(cluster);

 var request = new Request("Library:/Tutorials/NewsMagazine.robot");
 request.RobotLibrary = new DefaultRobotLibrary();
 var result = executor.Execute(request);
 Console.WriteLine(result);
 }

The RequestExecutor is hidden by default, so you do not have to keep track of it. You may only
create one RequestExecutor per cluster, so if you use it directly, you need to store a reference to
it throughout your application. Using Request.RegisterCluster(cluster) means that you can
ignore the RequestExecutor and lifecycle rules.

The RequestExecutor contains the necessary state and logic, which provides the load balancing
and failover features. Using the RequestExecutor directly also offers a few extra features.

RequestExecutor Features
When the RequestExecutor is not connected to a repository, you can dynamically add or remove
RoboServers by calling AddRoboServer(..) and RemoveRoboServer(..). These methods modify
the distribution list used inside the RequestExecutor.

The RequestExecutor.TotalAvailableSlots property contains the number of unused
execution slots across all RoboServers in the internal distribution list.

By using these methods, you can dynamically add RoboServers to your RequestExecutor once the
number of available execution slots becomes low.

When you create the RequestExecutor, you may optionally provide an IRqlEngineFactory. The
IRqlEngineFactory allows you to customize which RQLProtocol is used when connecting to
a RoboServer. This is needed only under rare circumstances, such as to use a client certificate to
increase security. See the Certificates chapter in the Kofax RPA Administrator's Guide for details.

Repository API
The Repository API allows you to query the repository of Management Console to get a list of
projects, robots, and the input required to call a robot. It also enables you to programmatically
deploy robots, types, and resource files.

57

Kofax RPA Developer's Guide - Legacy APIs

Repository Client
Communication with the repository is achieved through the RepositoryClient in the namespace
Com.KapowTech.RoboSuite.Api.Repository.Engine.

Get Projects from Repository
string UserName = "admin";
 string Password = "admin1234";
 RepositoryClient client = new RepositoryClient("http://localhost:50080/", UserName,
 Password);
 Project[] projects = client.GetProjects();
 foreach(Project p in projects) {
 Console.WriteLine(p);
 }

Here, a RepositoryClient is configured to connect to the repository of Management Console on
http://localhost:50080/, with a user name and password.

After the RepositoryClient is created, the GetProjects() method is used to query the
repository for a list of projects. Notice that when calling any of the RepositoryClient methods, a
RepositoryClientException is thrown if an error occurs.

The RepositoryClient has the following methods.

Methods of the RepositoryClient

Method signature Description

string ComputeChecksum(byte[] bytes) Returns the checksum of the specified file to verify
data integrity.

void DeleteConnector(string projectName,
string connectorName, bool silent,
AdditionalInfo additionalInfo)

Deletes a connector from a project. The
connectorName argument specifies the full path of
the connector.

void DeleteFile(RepositoryFile file,
AdditionalInfo additionalInfo)

Deletes the specified file from the repository.

void DeleteFolder(string projectName,
string folderPath, AdditionalInfo
additionalInfo)

Deletes the specified folder from the repository.

void DeleteResource(string projectName,
string resourceName, bool silent,
AdditionalInfo additionalInfo)

Deletes the specified resource from the repository.

void DeleteRobot(string projectName,
string robotName, bool silent,
AdditionalInfo additionalInfo)

Deletes the specified robot from the repository.

void DeleteSnippet(string projectName,
string snippetName, boolean silent,
AdditionalInfo additionalInfo)

Deletes the specified snippet from the repository.

void DeleteType(string projectName, string
typeName, bool silent, AdditionalInfo
additionalInfo)

Deletes the specified type from the repository.

58

Kofax RPA Developer's Guide - Legacy APIs

Method signature Description

void DeployConnector(string projectName,
string connectorName, byte[]
connectorBytes, bool failIfExists,
AdditionalInfo additionalInfo)

Deploys a connector to a project. If a connector with
the given name already exists, it can be overwritten
by setting failIfExists to false.

void DeployLibrary(string projectName,
EmbeddedFileBasedRobotLibrary library,
bool failIfExists, AdditionalInfo
additionalInfo)

Deploys a library to the server. If robots, types and
resources with the given names already exist, they
can be overwritten by setting failIfExists to
false.

void DeployResource(string projectName,
string resourceName, byte[] resourceBytes,
bool failIfExists, AdditionalInfo
additionalInfo)

Deploys a resource to a project. If a resource with the
given name already exists, it can be overwritten by
setting failIfExists to false.

void DeployRobot(string projectName,
string robotName, byte[] robotBytes,
bool failIfExists, AdditionalInfo
additionalInfo)

Deploys a robot to a project. If a robot with the given
name already exists, it can be overwritten by setting
failIfExists to false.

void DeploySnippet(string projectName,
string snippetName, byte[] snippetBytes,
bool failIfExists, AdditionalInfo
additionalInfo)

Deploys a snippet to a project. If a snippet with the
given name already exists, it can be overwritten by
setting failIfExists to false.

void DeployType(string projectName,
string typeName, byte[] typeBytes,
boolean failIfExists, AdditionalInfo
additionalInfo)

Deploys a type to a project. If a type with the given
name already exists, it can be overwritten by setting
failIfExists to false.

byte[] GetBytes(RepositoryFile file) Returns the contents of the specified file.

DateTime GetCurrentDate() Returns the current date and time of the
Management Console.

RepositoryFolder GetFileInventory(string
projectName, string folderName, string
fileName, FileType fileType)

Returns the file and the referenced files from the
project. Note that the file inventory is wrapped in a
RepositoryFolder to get references.

RepositoryFolder GetFolderInventory(string
projectName, string folderName)

Returns the folders and files of the subfolder in the
project.

IDictionary<string, string> GetInfo() Returns information about the Management Console
and the Repository API. The method returns a
mapping with:
• "application": The version of the Management

Console containing major, minor, and dot version,
for example: 11.5.0

• "repository": The ID of the latest DTD used
by the Repository API, such as //Kapow
Technologies//DTD Repository 1.6//EN

• "rql" to the ID of the latest DTD used by the
Robot Query Language API, such as //Kapow
Technologies//DTD RoboSuite Robot Query
Language 1.3//EN

59

Kofax RPA Developer's Guide - Legacy APIs

Method signature Description

RepositoryFolder
GetProjectInventory(string projectName)

Returns the entire tree of folders and files from the
repository.

Project[] GetProjects() Returns the projects that exist in this repository.

Cluster[] GetRoboServerClusters(bool
onlineRoboServers)

Returns a list of clusters and RoboServers that
are registered with the Management Console.
The onlineRoboServer flag indicates if only
RoboServers that are online should be included.

Robot[] GetRobotsByTag (string
projectName, string tagFragment)

Returns a list of robots with the tag containing the
tagFragment from the project.

RobotSignature GetRobotSignature(string
projectName, string robotName)

Returns the robot signature with the full path of
the robot, as well as the input variables required
to execute this robot, and a list of the types it may
return or store.

Robot[] GetRobotsInProject(string
projectName)

Returns the robots available in the project.

void MoveFile(RepositoryFile file, string
destinationPath)

Moves the specified file in the repository to the folder
specified in destinationPath.

string PingRepository () Pings the repository server. Returns null if the server
works fine. Returns an error message in case of
incorrect behavior.

RemoteCertificateValidationCallback Contains the current proxy server configuration.

void RenameRobot(RepositoryFile robotFile,
string newName)

Renames the specified robot file.

ServerCertificateValidationCallback Contains the current callback used to validate server
certificates.

void UpdateFile(RepositoryFile
file, byte[] bytes, AdditionalInfo
additionalInfo)

Overwrites the specified file in the repository with
new content.

 The full path is relative to your project folder.

AdditionalInfo parameter contains comments that appear in the Commit message column on
the Resources page of the Management Console. This parameter is optional.

The request may be declined if the credentials given do not have sufficient access.

The repository is accessed via http. When using the .Net version of the Repository API, any proxy
servers configured for the system will be used by the Repository API.

Deployment with Repository Client
The following example shows how to deploy a robot and a type from the local file system using the
RepositoryClient.

Deploying to Repository

60

Kofax RPA Developer's Guide - Legacy APIs

string user = "test";
 string password = "test1234";
 RepositoryClient client = new RepositoryClient("http://localhost:50080", user,
 password);

 byte[] robotBytes = File.ReadAllBytes("c:\\MyRobots\\Library\\Test.robot");
 byte[] typeBytes = File.ReadAllBytes("c:\\MyRobots\\Library\\Test.type");

 // we assume that no one has deleted the Default project
 client.deployRobot("Default project", "Test.robot", robotBytes, true);
 client.deployType("Default project", "Test.type", typeBytes, true);

Repository API as Rest
The repository can also be accessed via restful services.

Logging
Primarily for troubleshooting, the .NET API provides logging data. It does not write the logging
data, instead a plugin is provided so the application can integrate .NET API logging with the
application's own logging. The application registers a callback, or interface, to log data. In this way,
the application integrates API data logging.

The logging functionality resides in the Com.KapowTech.RoboSuite.Api.Logging namespace.
• To access the simplest form of logging, register a delegate function public delegate void
Logger(Level level, string msg); with SimpleLogger.SetLogger(Logger logger).
The delegate is called when the API has something to log, passing the log level and message. The
delegate is not called if the maximum error level is exceeded.

• To set the error level, use the SimpleLogger.LogLevel property, with values Fatal, Error,
Warn, Info, and Debug.

If the functionality of the SimpleLogger does not provide what you want, register an
implementation of the ILogFactory interface with Registered.Logger in the application. This
interface should return objects implementing the ILog interfaces for specific types (components of
the API) upon request. For more information refer to the compiled help.

Applications that use log4net for logging can use the log4netlogging.dll assembly found in
the API/lib/log4netlogging directory.

The Logging class in the Com.KapowTech.RoboSuite.Api.Log4NetLogging namespace
provides two methods to register log4net logging:
• Logging.Install(string config_file) initiates log4net logging, configured from the

configuration file.

• Install() requires the application to configure log4net itself.

If no logging method is registered, the API silently ignores all logging data.

61

Kofax RPA Developer's Guide - Legacy APIs

Management Console API
It is possible to queue execution of robots on the Management Console. Instead of running the
robot directly on the RoboServer, the robot is placed in the queue on the Management Console. Be
aware that some features such as setting the execute ID, defining the database connections, setting
the max run time, and forcing a robot to stop on API exceptions cannot be controlled when queuing
execution of robots. The following are benefits of queuing:

• Robots are queued even when resources such as devices are not available.
• Robots are routed to the correct RoboServer when multiple versions of RoboServers are installed.
• You do not need to manage clusters while building an application. The clusters are managed on

the project level on the Management Console.

Queue a robot run
Use the QueuedRequest class to queue a robot run on the Management Console.

 Code is case-sensitive.

NET API Example:
QueuedRequest request = new QueuedRequest("myfolder/myrobot.robot");
 request.RobotLibrary = new RepositoryRobotLibrary
 ("http://localhost:50080/", "Default Project",
 60000, "admin", "admin");
 request.Priority = QueuedRequestPriority.HIGH;
 RqlResult result = request.Execute();

Constructors

Constructor Description

QueuedRequest(String robot) Creates a new QueuedRequest with the specified
robot.
Properties extend the request. See the following table
for Properties parameters.

Properties

Property Description

PollingIntervalMillis Updates to the robot run status. Returns values and
API exception errors by intervals in milliseconds
between polls. Short intervals cause more load on
the Management Console but increase the rate of
updates per request.
The default value is 1000 (1 second).

62

Kofax RPA Developer's Guide - Legacy APIs

Property Description

RobotURL The name of the robot to run, including a path if the
robot resides in a folder.

 The URL part of the property is not an actual
URL. The name was chosen for reasons of
backward compatibility.

RobotLibrary The robot library to use in the request. You must set a
robot library before calling execute().

Priority The priority of the request in the queue: MINIMUM,
LOW, MEDIUM, HIGH, or MAXIMUM.
The default value is MEDIUM.

StopRobotOnApiException When set, the robot is stopped on the RoboServer
after the first API exception is sent to the client.
The default value is true.

Timeout The maximum time in seconds that the robot waits in
the queue for a RoboServer to run the robot.
The default value is 600 (10 minutes).

Methods

Method Description

CreateInputVariable(String name) Creates a new Input Object with the specified name,
and returns an RQLObjectBuilder that you can use to
build the object.

CreateInputVariable(String name, RQLObject
rqlObject)

Creates a new Input Object with the specified name
from rqlObject. This object is useful if responses
from one robot are used as input to another robot.

CreateRQLObjectBuilder(String name) Creates a new RQLObjectBuilder that creates an
RQLObject with the given name.

CreateOAuthInputVariable(String name,
String userName, String applicationName)

Creates an input variable for an OAUTH input type
that looks up the OAuth details on the Management
Console, based on the user name and application
name. Ensure that on the Management Console the
application and OAuth user are linked to the same
project as the robot you are requesting to run.

Execute() Places the robot in the queue for running, then waits
for it to terminate.

Execute(RobotResponseHandler handler) Places the robot in the queue for running, then calls
the handler at various points during the request.

63

Chapter 3

Management Console REST API

This chapter provides information on the Management Console REST services provided with the
product. The REST services can be accessed from the Swagger UI using the following example URL:

http://localhost:8080/ManagementConsole/api/swagger-ui.html

The following REST services are available in Kofax RPA 11.5.0.

REST service Purpose

tasks Queuing of robot tasks. With this service, you can
get an example structure of robot input required to
run the robot, queue robot tasks, and obtain robot
execution result.

Tasks
This is the REST service for robot task queuing.

Methods

POST robotInputExample
Used for getting an example structure of the robot input values required to run the robot. These are
the values that you configure in the "Configure input" step during schedule creation.
In the Parameters section, edit the request body to specify the projectName and robotName
properties and then click Execute. The response will contain the example structure of your robot
input that you can use to create a request to queue robot tasks.

POST queueRobot
Used for queuing of robot tasks.
In the Parameters section, edit the request body as shown here:

1. In the priority property, specify the most suitable priority level: MINIMUM, LOW, MEDIUM,
HIGH, or MAXIMUM. Tasks that have a higher priority are provided access to the required
resources and are executed sooner than those having a lower priority. See "Queuing of
Schedule Jobs" in Kofax RPA Help for more information.

2. Specify the projectName and robotName properties.

3. In the robotInputConfig property, paste the input example structure that you obtained with
the robotInputExample method and edit the input values as appropriate.

4. In the timeout property, specify the timeout when the tasks are to stop queuing.

64

http://localhost:8080/ManagementConsole/api/swagger-ui.html

Kofax RPA Developer's Guide - Legacy APIs

5. Click Execute.

GET getRobotOutput/{ticket}
Used for getting the result of robot execution, such as robot output, queuing status, and error
information.
When the POST queueRobot request is executed, a unique execution ticket is generated for this
request. Copy the ticket from the queueRobot response and paste it in the Parameters section in
the getRobotOutput request. Click Execute.
The response will contain the status and result of the robot execution. If the robot contains any
output, it is written into the values property.

65

	Table of Contents
	Preface
	Related Documentation
	Training
	Getting help with Kofax products

	Java Programmer's Guide
	Java Basics
	First Example
	Robot Input
	Attribute Types
	Execution Parameters
	Robot Libraries

	Java Advanced
	Load Distribution and Failover
	One Client Rule

	Executor Logger
	Data Streaming
	SSL
	Parallel Execution
	Repository Integration

	Under the Hood
	RequestExecutor Features
	Web Applications

	API Debugging
	Repository API
	Dependencies
	Repository Client
	Deployment with Repository Client
	Repository Rest API

	Management Console API
	Configure Java API
	Queue a robot run

	.NET Programmer's Guide
	.NET Basics
	First Example
	Robot Input
	Attribute Types
	Execution Parameters
	Robot Libraries

	.NET Advanced
	Load Distribution
	One Client Rule

	Data Streaming
	SSL
	Repository Integration
	Executor Logger

	Under the Hood
	RequestExecutor Features

	Repository API
	Repository Client
	Deployment with Repository Client
	Repository API as Rest
	Logging

	Management Console API
	Queue a robot run

	Management Console REST API
	Tasks

